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Bfintng furures SOLUTION KEY

Q.1 Classify the following integral equations as Volterra, Fredholm, linear, non-linear, homoge-
neous, non-homogeneous, singular, non-singular, first kind, and second kind.
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a. / (@2t — 22)y(1)dt = [(z)
a
Sol. Volterra Equation, Linear, Non-homogeneous, Non-singular, First Kind.
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Sol. Fredholm Equation, Non-linear, Non-homogeneous, Singular, Second Kind.

c. )\/Jrooe_“f(t)dt:f(s), AeR, seC, N#£0
0

Sol. Fredholm Equation, Linear, Homogeneous, Singular, Second Kind.

Tsin(t)g(t) ,
d./o ﬁdt—g(x)

Sol. Volterra Equation, Linear, Homogeneous, Singular, Second Kind.

c. /01 <\}5 - \2) o(B)dt = M (x) + v(x)

Sol. Fredholm Equation, Linear, Non-homogeneous, Singular, Second Kind.

Q.2 Consider the integral equation

(@) = ¢ + )\/12 (1 * y) o(y)dy. (1)

(a) Solve the integral equations (1) and identify its resolvent kernel.

Sol. Note that the integral equations (1) is Fredholm second kind linear with a separable
kernel. Therefore, its solution is

v(z) ="+ =, (a)

2
where C' = / (1 +y)v(y)dy. In order to evaluate C, multiply (1) with (1 4+ =) and

1
integrate over (1,2), i.e.,

2 B 2 y 21+$ 2 . )
/1(1+y)v(y)dy—/1 (1+ye dy+k/1 . /1(1+y) (y)dyd

2 29, 2
—/ (1+y)eydy+)\/ xdw/ (1+y)v(y)dy.
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On simplification, we get

/12(1 +y)v(y)dy [1 — )\/12 Lt xdw] :/12(1 +y)edy.
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With the assumption that {1 - A / dm] # 0, we get
1

1

2
[1—A/ 1+xdac]
1 X

Thus, the solution to the integral equation (1) is given by

2 2
/ (1+ y)o(y)dy = / (1+ y)evdy.
1 1
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2
x[l—)\/ 1+xdm}
1 X
2 A(1
:€z+/ (1+y)
1
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3 e’dy.
x[l—)\/ 1+xdx}
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From equation (b), it is apparent that the resolvent kernel associated with (1) is

A1+ y)

9 ’
:L'|:1—)\/ 1+$daz}
1 X

and the solution to (1) can be written as

2
v(z) =€ + /1 (1+y)e’dy

R(z,y; A) :=

2
v(z) =e€" +/ R(z,y; N)edy.
1

On evaluating the integrals involved in (b), one can easily get
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e +/1 x[l — A(In|z| +:E)r(l+y) "
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(b) Find the characteristic values and associated non-trivial solutions (if any) of the asso-
ciated homogeneous equation to (1).

Sol. The associated homogeneous equation to (1) is given by

v(z) = )\/12 (1 Zy> v(y)dy,

whose solution can be given by v(z) = AC where C'is defined as in Part 2(a). In order

find the value of C', we follow the same steps and get the equations

/12(1 +y)o(y)dy [1 _ A/j L mdx] 0.

X
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If C = / (1 4+ y)v(y)dy = 0 then only trivial solution v(z) = 0 is possible. The
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This is the only characteristic value. The corresponding non-trivial solutions are

non-trivial solutions are possible only if [1 —A / dac] =0, i.e.,
1

C
= — for all C' € R.
v(x) T2 11) or a € (e)
Remark that these are infinite many solutions but there is only one linearly independent
1
solution (say) v(x) = P2 s 1)’
Q.3 Consider the integral equation
™
h(y) = siny + )\/ cosysin z h(z)dz. (2)
0

(a) Solve the integral equation and identify the resolvent kernel.

Sol. Note that (2) is also Fredholm linear second kind integral equation with a separable
kernel. Therefore, the solution to (2) is given by

h(y) =siny + CAcosy with C:= / sin zh(z)dz. (f)
0

In order to find the value of C, multiply equation (2) with sinz and integrate over
[0,7]. This renders

C—/ sinzh(z)dz-/ sin? zdz—l—)\/ sinycosy/ sin zh(z)dzdy
0 0 0 0
:/ sin22d2+)\/ Sinycosydy/ sin zh(z)dz
0 0 0

s s
:/ sin? zdz + C’)\/ siny cosy dy.
0 0



On simplification, we arrive at

C [1 —)\/ siny cosydy] :/ sin? zdz.
0 0

™
With an assumption that [1 — )\/ siny Cosydy] £ 0, we get
0

1 ™
C = sin? zdz. (g)

[1)\/ sinycosydy] 0
0

Therefore, the solution to (1) is given by

A ™
h(y) =siny + - o8y sin? zdz
[1—)\/ siny cosydy] 0
0
=siny + / )\cgsy S sin z dz. (h)
0 [1—)\/ siny cosydy}
0

Therefore, from Eq. (h), it is clear that the resolvent kernel of Eq. (2) is given by

Acosy sin z

{1 — )\/ siny cosydy]
0

Moreover, on further simplification, one arrives at

R(y, 2 A) := (i)

h(y) —siny + 2/\Trcosy / 1-— ccz)s(Qz) o
2 — /\/ sin(2y) dy ”°
0
iy + 4\ cosy _ QZ—Zin(Qz)yr
0

44\ [cos(2y)] 0

. AT
=siny + ?cosy.

(b) Find eigenvalues and the corresponding eigen-functions (if any).

Sol. In this case, the homogeneous equation associated to Eq. (2) does not have an eigen-
value and therefore, admits only a trivial solution. In fact, it is evident from Part 3(a)

that [1 — )\/ siny cosydy] # 0. Indeed,
0

s

1—)\/ sinycosydyzl—)\/ sin(2y)dy:1+)\[cos(2y)} :1—5(0):17&0.
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Therefore, following the procedure as in Q2(b), we will arrive at the situation

C [1—/\/ siny cosydy} =0
0

and that will lead only to C' = 0 for every choice of Al Thus, there is only trivial solution
to the homogeneous equation which does not have any eigenvalues and eigen-functions.

Q.4 Consider the problem of finding ¢(x) from the integral equation

o) = 1@ = [ et ®
where f(x) is a known, real continuous function with continuous first derivative and f(0) = 0.

(a) Show that this problem may be re-expressed as an ordinary differential equation with
suitable boundary condition. (Hint: Recall the Leibniz rule

d 5@ dp da

o)y = ot 5(e) — orteale)) + [ ey,

dr a(z)

discussed in the class).

Sol. Differentiating Eq. (3) using the Leibniz rule, one gets

¢ @) =1'0) =) | o )ela) = 1000 + [ ea]
~ /(&) ~ Npla) 0+ 0
=f'(z) = Ap(x).

Moreover, since f(0) = 0, the solution ¢ to the integral equation (3) satisfies the
condition

w(O):f(O)—A/O oy)dy =0 —0=0.

Thus, the integral equation (3) can be re-expressed as a boundary value problem

{wm) +Ap(a) = f(x),
¢(0) = 0.

(b) Express the resulting differential equation as L[p] = f.

Sol. In view of the boundary value problem (j), we define the differential operator

LE] = o[ 4+ ML, ()

where [ is the identity map. Having defined L in Eq. (k), one can rewrite Eq. (j) as
Llg](z) = f'(x).



(c) Show that the operator L is linear.

Sol. It is evident that L is a linear differential operator. Indeed, for all sufficiently smooth
functions p; and @9, and constants c1,co € R,

Licipr + copa](x)

d
~ir [c1p1 + caa] + A [c1e1 + cap2]

d d
=a [1] + g [pa] + c1 A [p1] + c2X [02]

= (CZ (1] + m) + 2 <CZ; [pa] + Am)

=c1L[p1] + c1L[p1],

and
Lo = L )+ 20 =0
Cdx -
“Your problem isn’t the problem, it’s your attitude about the problem.” — Ann
Brashares.



