Q. 1 Classify the following integral equations as Volterra, Fredholm, linear, non-linear, homogeneous, non-homogeneous, singular, non-singular, first kind, and second kind.
a. $\int_{a}^{x}\left(x^{2} t-x t^{2}\right) y(t) d t=f(x)$

Sol. Volterra Equation, Linear, Non-homogeneous, Non-singular, First Kind.
b. $\int_{0}^{1} \frac{\sqrt{f(t)}}{x-t} d t=1-x+f(x)$

Sol. Fredholm Equation, Non-linear, Non-homogeneous, Singular, Second Kind.
c. $\lambda \int_{0}^{+\infty} e^{-s t} f(t) d t=f(s), \quad \lambda \in \mathbb{R}, \quad s \in \mathbb{C}, \quad \lambda \neq 0$

Sol. Fredholm Equation, Linear, Homogeneous, Singular, Second Kind.
d. $\int_{0}^{x} \frac{\sin (t) g(t)}{\sqrt{x-t}} d t=g(x)$

Sol. Volterra Equation, Linear, Homogeneous, Singular, Second Kind.
e. $\int_{0}^{1}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{t}}\right) v(t) d t=\lambda f(x)+v(x)$

Sol. Fredholm Equation, Linear, Non-homogeneous, Singular, Second Kind.
Q. 2 Consider the integral equation

$$
\begin{equation*}
v(x)=e^{x}+\lambda \int_{1}^{2}\left(\frac{1+y}{x}\right) v(y) d y . \tag{1}
\end{equation*}
$$

(a) Solve the integral equations (1) and identify its resolvent kernel.

Sol. Note that the integral equations (1) is Fredholm second kind linear with a separable kernel. Therefore, its solution is

$$
\begin{equation*}
v(x)=e^{x}+\frac{C \lambda}{x}, \tag{a}
\end{equation*}
$$

where $C=\int_{1}^{2}(1+y) v(y) d y$. In order to evaluate C, multiply (1) with $(1+x)$ and integrate over (1,2), i.e.,

$$
\begin{aligned}
\int_{1}^{2}(1+y) v(y) d y & =\int_{1}^{2}(1+y) e^{y} d y+\lambda \int_{1}^{2} \frac{1+x}{x} \int_{1}^{2}(1+y) v(y) d y d x \\
& =\int_{1}^{2}(1+y) e^{y} d y+\lambda \int_{1}^{2} \frac{1+x}{x} d x \int_{1}^{2}(1+y) v(y) d y
\end{aligned}
$$

On simplification, we get

$$
\int_{1}^{2}(1+y) v(y) d y\left[1-\lambda \int_{1}^{2} \frac{1+x}{x} d x\right]=\int_{1}^{2}(1+y) e^{y} d y
$$

With the assumption that $\left[1-\lambda \int_{1}^{2} \frac{1+x}{x} d x\right] \neq 0$, we get

$$
\int_{1}^{2}(1+y) v(y) d y=\frac{1}{\left[1-\lambda \int_{1}^{2} \frac{1+x}{x} d x\right]} \int_{1}^{2}(1+y) e^{y} d y
$$

Thus, the solution to the integral equation (1) is given by

$$
\begin{align*}
v(x) & =e^{x}+\frac{\lambda}{x\left[1-\lambda \int_{1}^{2} \frac{1+x}{x} d x\right]} \int_{1}^{2}(1+y) e^{y} d y \\
& =e^{x}+\int_{1}^{2} \frac{\lambda(1+y)}{x\left[1-\lambda \int_{1}^{2} \frac{1+x}{x} d x\right]} e^{y} d y \tag{b}
\end{align*}
$$

From equation (b), it is apparent that the resolvent kernel associated with (1) is

$$
\begin{equation*}
R(x, y ; \lambda):=\frac{\lambda(1+y)}{x\left[1-\lambda \int_{1}^{2} \frac{1+x}{x} d x\right]} \tag{c}
\end{equation*}
$$

and the solution to (1) can be written as

$$
v(x)=e^{x}+\int_{1}^{2} R(x, y ; \lambda) e^{y} d y
$$

On evaluating the integrals involved in (b), one can easily get

$$
\begin{align*}
v(x) & =e^{x}+\int_{1}^{2} \frac{\lambda}{x[1-\lambda(\ln |x|+x)]_{1}^{2}}(1+y) e^{y} d y \\
& =e^{x}+\frac{\lambda}{x(1-\lambda(\ln |2|+2-1))} \int_{1}^{2}(1+y) e^{y} d y \\
& =e^{x}+\frac{\lambda}{x(1-\lambda(\ln |2|+1))}\left[y e^{y}\right]_{1}^{2} \\
& =e^{x}+\frac{\lambda\left(2 e^{2}-e\right)}{x(1-\lambda(\ln |2|+1))} . \tag{d}
\end{align*}
$$

(b) Find the characteristic values and associated non-trivial solutions (if any) of the associated homogeneous equation to (1).
Sol. The associated homogeneous equation to (1) is given by

$$
v(x)=\lambda \int_{1}^{2}\left(\frac{1+y}{x}\right) v(y) d y
$$

whose solution can be given by $v(x)=\frac{\lambda C}{x}$ where C is defined as in Part 2(a). In order find the value of C, we follow the same steps and get the equations

$$
\int_{1}^{2}(1+y) v(y) d y\left[1-\lambda \int_{1}^{2} \frac{1+x}{x} d x\right]=0
$$

If $C=\int_{1}^{2}(1+y) v(y) d y=0$ then only trivial solution $v(x)=0$ is possible. The non-trivial solutions are possible only if $\left[1-\lambda \int_{1}^{2} \frac{1+x}{x} d x\right]=0$, i.e.,

$$
\lambda=\left(\int_{1}^{2} \frac{1+x}{x} d x\right)^{-1}=\frac{1}{(\ln 2+1)}
$$

This is the only characteristic value. The corresponding non-trivial solutions are

$$
\begin{equation*}
v(x)=\frac{C}{x(\ln 2+1)}, \quad \text { for all } C \in \mathbb{R} \tag{e}
\end{equation*}
$$

Remark that these are infinite many solutions but there is only one linearly independent solution (say) $v(x)=\frac{1}{x(\ln 2+1)}$.
Q. 3 Consider the integral equation

$$
\begin{equation*}
h(y)=\sin y+\lambda \int_{0}^{\pi} \cos y \sin z h(z) d z \tag{2}
\end{equation*}
$$

(a) Solve the integral equation and identify the resolvent kernel.

Sol. Note that (2) is also Fredholm linear second kind integral equation with a separable kernel. Therefore, the solution to (2) is given by

$$
\begin{equation*}
h(y)=\sin y+C \lambda \cos y \quad \text { with } \quad C:=\int_{0}^{\pi} \sin z h(z) d z \tag{f}
\end{equation*}
$$

In order to find the value of C, multiply equation (2) with $\sin x$ and integrate over $[0, \pi]$. This renders

$$
\begin{aligned}
C & =\int_{0}^{\pi} \sin z h(z) d z=\int_{0}^{\pi} \sin ^{2} z d z+\lambda \int_{0}^{\pi} \sin y \cos y \int_{0}^{\pi} \sin z h(z) d z d y \\
& =\int_{0}^{\pi} \sin ^{2} z d z+\lambda \int_{0}^{\pi} \sin y \cos y d y \int_{0}^{\pi} \sin z h(z) d z \\
& =\int_{0}^{\pi} \sin ^{2} z d z+C \lambda \int_{0}^{\pi} \sin y \cos y d y
\end{aligned}
$$

On simplification, we arrive at

$$
C\left[1-\lambda \int_{0}^{\pi} \sin y \cos y d y\right]=\int_{0}^{\pi} \sin ^{2} z d z
$$

With an assumption that $\left[1-\lambda \int_{0}^{\pi} \sin y \cos y d y\right] \neq 0$, we get

$$
\begin{equation*}
C=\frac{1}{\left[1-\lambda \int_{0}^{\pi} \sin y \cos y d y\right]} \int_{0}^{\pi} \sin ^{2} z d z \tag{g}
\end{equation*}
$$

Therefore, the solution to (1) is given by

$$
\begin{align*}
h(y) & =\sin y+\frac{\lambda \cos y}{\left[1-\lambda \int_{0}^{\pi} \sin y \cos y d y\right]} \int_{0}^{\pi} \sin ^{2} z d z \\
& =\sin y+\int_{0}^{\pi} \frac{\lambda \cos y \sin z}{\left[1-\lambda \int_{0}^{\pi} \sin y \cos y d y\right]} \sin z d z \tag{h}
\end{align*}
$$

Therefore, from Eq. (h), it is clear that the resolvent kernel of Eq. (2) is given by

$$
\begin{equation*}
R(y, z ; \lambda):=\frac{\lambda \cos y \sin z}{\left[1-\lambda \int_{0}^{\pi} \sin y \cos y d y\right]} . \tag{i}
\end{equation*}
$$

Moreover, on further simplification, one arrives at

$$
\begin{aligned}
h(y) & =\sin y+\frac{2 \lambda \cos y}{2-\lambda \int_{0}^{\pi} \sin (2 y) d y} \int_{0}^{\pi} \frac{1-\cos (2 z)}{2} d z \\
& =\sin y+\frac{4 \lambda \cos y}{4+\lambda[\cos (2 y)]_{0}^{\pi}}\left[\frac{2 z-\sin (2 z)}{4}\right]_{0}^{\pi} \\
& =\sin y+\frac{\lambda \pi}{2} \cos y .
\end{aligned}
$$

(b) Find eigenvalues and the corresponding eigen-functions (if any).

Sol. In this case, the homogeneous equation associated to Eq. (2) does not have an eigenvalue and therefore, admits only a trivial solution. In fact, it is evident from Part 3(a) that $\left[1-\lambda \int_{0}^{\pi} \sin y \cos y d y\right] \neq 0$. Indeed,
$1-\lambda \int_{0}^{\pi} \sin y \cos y d y=1-\frac{\lambda}{2} \int_{0}^{\pi} \sin (2 y) d y=1+\frac{\lambda}{4}[\cos (2 y)]_{0}^{\pi}=1-\frac{\lambda}{4}(0)=1 \neq 0$.

Therefore, following the procedure as in Q2(b), we will arrive at the situation

$$
C\left[1-\lambda \int_{0}^{\pi} \sin y \cos y d y\right]=0
$$

and that will lead only to $C=0$ for every choice of λ ! Thus, there is only trivial solution to the homogeneous equation which does not have any eigenvalues and eigen-functions.
Q. 4 Consider the problem of finding $\varphi(x)$ from the integral equation

$$
\begin{equation*}
\varphi(x)=f(x)-\lambda \int_{0}^{x} \varphi(y) d y \tag{3}
\end{equation*}
$$

where $f(x)$ is a known, real continuous function with continuous first derivative and $f(0)=0$.
(a) Show that this problem may be re-expressed as an ordinary differential equation with suitable boundary condition. (Hint: Recall the Leibniz rule

$$
\frac{d}{d x} \int_{\alpha(x)}^{\beta(x)} \kappa(x, y) d y=\frac{d \beta}{d x} \kappa(x, \beta(x))-\frac{d \alpha}{d x} \kappa(x, \alpha(x))+\int_{\alpha(x)}^{\beta(x)} \frac{\partial}{\partial x}(\kappa(x, y)) d y
$$

discussed in the class).
Sol. Differentiating Eq. (3) using the Leibniz rule, one gets

$$
\begin{aligned}
\varphi^{\prime}(x) & =f^{\prime}(x)-\lambda\left[\frac{d}{d x}(x) \varphi(x)-\frac{d}{d x}(0) \varphi(0)+\int_{0}^{x} \frac{d}{d x}(\varphi(y)) d y\right] \\
& =f^{\prime}(x)-\lambda[\varphi(x)-0+0] \\
& =f^{\prime}(x)-\lambda \varphi(x)
\end{aligned}
$$

Moreover, since $f(0)=0$, the solution φ to the integral equation (3) satisfies the condition

$$
\varphi(0)=f(0)-\lambda \int_{0}^{0} \varphi(y) d y=0-0=0
$$

Thus, the integral equation (3) can be re-expressed as a boundary value problem

$$
\left\{\begin{array}{l}
\varphi^{\prime}(x)+\lambda \varphi(x)=f^{\prime}(x) \tag{j}\\
\varphi(0)=0
\end{array}\right.
$$

(b) Express the resulting differential equation as $L[\varphi]=f^{\prime}$.

Sol. In view of the boundary value problem (j), we define the differential operator

$$
\begin{equation*}
L[\cdot]:=\frac{d}{d x}[\cdot]+\lambda I[\cdot], \tag{k}
\end{equation*}
$$

where I is the identity map. Having defined L in Eq. (k), one can rewrite Eq. (j) as

$$
L[\varphi](x)=f^{\prime}(x)
$$

(c) Show that the operator L is linear.

Sol. It is evident that L is a linear differential operator. Indeed, for all sufficiently smooth functions φ_{1} and φ_{2}, and constants $c_{1}, c_{2} \in \mathbb{R}$,

$$
\begin{aligned}
L\left[c_{1} \varphi_{1}+c_{2} \varphi_{2}\right](x) & =\frac{d}{d x}\left[c_{1} \varphi_{1}+c_{2} \varphi_{2}\right]+\lambda\left[c_{1} \varphi_{1}+c_{2} \varphi_{2}\right] \\
& =c_{1} \frac{d}{d x}\left[\varphi_{1}\right]+c_{2} \frac{d}{d x}\left[\varphi_{2}\right]+c_{1} \lambda\left[\varphi_{1}\right]+c_{2} \lambda\left[\varphi_{2}\right] \\
& =c_{1}\left(\frac{d}{d x}\left[\varphi_{1}\right]+\lambda \varphi_{1}\right)+c_{2}\left(\frac{d}{d x}\left[\varphi_{2}\right]+\lambda \varphi_{2}\right) \\
& =c_{1} L\left[\varphi_{1}\right]+c_{1} L\left[\varphi_{1}\right],
\end{aligned}
$$

and

$$
L[0]=\frac{d}{d x}(0)+\lambda 0=0 .
$$

[^0]
[^0]: "Your problem isn't the problem, it's your attitude about the problem." - Ann Brashares.

