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Solution Key

Q.1 Classify the following integral equations as Volterra, Fredholm, linear, non-linear, homoge-
neous, non-homogeneous, singular, non-singular, first kind, and second kind.

a.

∫ x

a
(x2t− xt2)y(t)dt = f(x)

Sol. Volterra Equation, Linear, Non-homogeneous, Non-singular, First Kind.

b.

∫ 1

0

√
f(t)

x− t
dt = 1− x+ f(x)

Sol. Fredholm Equation, Non-linear, Non-homogeneous, Singular, Second Kind.

c. λ

∫ +∞

0
e−stf(t)dt = f(s), λ ∈ R, s ∈ C, λ 6= 0

Sol. Fredholm Equation, Linear, Homogeneous, Singular, Second Kind.

d.

∫ x

0

sin(t)g(t)√
x− t

dt = g(x)

Sol. Volterra Equation, Linear, Homogeneous, Singular, Second Kind.

e.

∫ 1

0

(
1√
x
− 1√

t

)
v(t)dt = λf(x) + v(x)

Sol. Fredholm Equation, Linear, Non-homogeneous, Singular, Second Kind.

Q.2 Consider the integral equation

v(x) = ex + λ

∫ 2

1

(
1 + y

x

)
v(y)dy. (1)

(a) Solve the integral equations (1) and identify its resolvent kernel.

Sol. Note that the integral equations (1) is Fredholm second kind linear with a separable
kernel. Therefore, its solution is

v(x) = ex +
C λ

x
, (a)

where C =

∫ 2

1
(1 + y)v(y)dy. In order to evaluate C, multiply (1) with (1 + x) and

integrate over (1, 2), i.e.,∫ 2

1
(1 + y)v(y)dy =

∫ 2

1
(1 + y)eydy + λ

∫ 2

1

1 + x

x

∫ 2

1
(1 + y)v(y)dydx

=

∫ 2

1
(1 + y)eydy + λ

∫ 2

1

1 + x

x
dx

∫ 2

1
(1 + y)v(y)dy.
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On simplification, we get∫ 2

1
(1 + y)v(y)dy

[
1− λ

∫ 2

1

1 + x

x
dx

]
=

∫ 2

1
(1 + y)eydy.

With the assumption that

[
1− λ

∫ 2

1

1 + x

x
dx

]
6= 0, we get

∫ 2

1
(1 + y)v(y)dy =

1[
1− λ

∫ 2

1

1 + x

x
dx

] ∫ 2

1
(1 + y)eydy.

Thus, the solution to the integral equation (1) is given by

v(x) =ex +
λ

x

[
1− λ

∫ 2

1

1 + x

x
dx

] ∫ 2

1
(1 + y)eydy

=ex +

∫ 2

1

λ(1 + y)

x

[
1− λ

∫ 2

1

1 + x

x
dx

]eydy. (b)

From equation (b), it is apparent that the resolvent kernel associated with (1) is

R(x, y;λ) :=
λ(1 + y)

x

[
1− λ

∫ 2

1

1 + x

x
dx

] , (c)

and the solution to (1) can be written as

v(x) = ex +

∫ 2

1
R(x, y;λ)eydy.

On evaluating the integrals involved in (b), one can easily get

v(x) =ex +

∫ 2

1

λ

x

[
1− λ(ln |x|+ x)

]2
1

(1 + y)eydy

=ex +
λ

x(1− λ(ln |2|+ 2− 1))

∫ 2

1
(1 + y)eydy

=ex +
λ

x(1− λ(ln |2|+ 1))

[
yey
]2
1

=ex +
λ(2e2 − e)

x(1− λ(ln |2|+ 1))
. (d)
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(b) Find the characteristic values and associated non-trivial solutions (if any) of the asso-
ciated homogeneous equation to (1).

Sol. The associated homogeneous equation to (1) is given by

v(x) = λ

∫ 2

1

(
1 + y

x

)
v(y)dy,

whose solution can be given by v(x) =
λC

x
where C is defined as in Part 2(a). In order

find the value of C, we follow the same steps and get the equations∫ 2

1
(1 + y)v(y)dy

[
1− λ

∫ 2

1

1 + x

x
dx

]
= 0.

If C =

∫ 2

1
(1 + y)v(y)dy = 0 then only trivial solution v(x) = 0 is possible. The

non-trivial solutions are possible only if

[
1− λ

∫ 2

1

1 + x

x
dx

]
= 0, i.e.,

λ =

(∫ 2

1

1 + x

x
dx

)−1
=

1

(ln 2 + 1)
.

This is the only characteristic value. The corresponding non-trivial solutions are

v(x) =
C

x(ln 2 + 1)
, for all C ∈ R. (e)

Remark that these are infinite many solutions but there is only one linearly independent

solution (say) v(x) =
1

x(ln 2 + 1)
.

Q.3 Consider the integral equation

h(y) = sin y + λ

∫ π

0
cos y sin z h(z)dz. (2)

(a) Solve the integral equation and identify the resolvent kernel.

Sol. Note that (2) is also Fredholm linear second kind integral equation with a separable
kernel. Therefore, the solution to (2) is given by

h(y) = sin y + Cλ cos y with C :=

∫ π

0
sin zh(z)dz. (f)

In order to find the value of C, multiply equation (2) with sinx and integrate over
[0, π]. This renders

C =

∫ π

0
sin zh(z)dz =

∫ π

0
sin2 zdz + λ

∫ π

0
sin y cos y

∫ π

0
sin zh(z)dzdy

=

∫ π

0
sin2 zdz + λ

∫ π

0
sin y cos y dy

∫ π

0
sin zh(z)dz

=

∫ π

0
sin2 zdz + Cλ

∫ π

0
sin y cos y dy.
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On simplification, we arrive at

C

[
1− λ

∫ π

0
sin y cos y dy

]
=

∫ π

0
sin2 zdz.

With an assumption that

[
1− λ

∫ π

0
sin y cos y dy

]
6= 0, we get

C =
1[

1− λ
∫ π

0
sin y cos y dy

] ∫ π

0
sin2 zdz. (g)

Therefore, the solution to (1) is given by

h(y) = sin y +
λ cos y[

1− λ
∫ π

0
sin y cos y dy

] ∫ π

0
sin2 zdz

= sin y +

∫ π

0

λ cos y sin z[
1− λ

∫ π

0
sin y cos y dy

] sin z dz. (h)

Therefore, from Eq. (h), it is clear that the resolvent kernel of Eq. (2) is given by

R(y, z;λ) :=
λ cos y sin z[

1− λ
∫ π

0
sin y cos y dy

] . (i)

Moreover, on further simplification, one arrives at

h(y) = sin y +
2λ cos y

2− λ
∫ π

0
sin(2y) dy

∫ π

0

1− cos(2z)

2
dz

= sin y +
4λ cos y

4 + λ

[
cos(2y)

]π
0

[
2z − sin(2z)

4

]π
0

= sin y +
λπ

2
cos y.

(b) Find eigenvalues and the corresponding eigen-functions (if any).

Sol. In this case, the homogeneous equation associated to Eq. (2) does not have an eigen-
value and therefore, admits only a trivial solution. In fact, it is evident from Part 3(a)

that

[
1− λ

∫ π

0
sin y cos y dy

]
6= 0. Indeed,

1− λ
∫ π

0
sin y cos y dy = 1− λ

2

∫ π

0
sin(2y) dy = 1 +

λ

4

[
cos(2y)

]π
0

= 1− λ

4
(0) = 1 6= 0.
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Therefore, following the procedure as in Q2(b), we will arrive at the situation

C

[
1− λ

∫ π

0
sin y cos y dy

]
= 0

and that will lead only to C = 0 for every choice of λ! Thus, there is only trivial solution
to the homogeneous equation which does not have any eigenvalues and eigen-functions.

Q.4 Consider the problem of finding ϕ(x) from the integral equation

ϕ(x) = f(x)− λ
∫ x

0
ϕ(y)dy, (3)

where f(x) is a known, real continuous function with continuous first derivative and f(0) = 0.

(a) Show that this problem may be re-expressed as an ordinary differential equation with
suitable boundary condition. (Hint: Recall the Leibniz rule

d

dx

∫ β(x)

α(x)
κ(x, y)dy =

dβ

dx
κ(x, β(x))− dα

dx
κ(x, α(x)) +

∫ β(x)

α(x)

∂

∂x
(κ(x, y))dy,

discussed in the class).

Sol. Differentiating Eq. (3) using the Leibniz rule, one gets

ϕ′(x) =f ′(x)− λ
[
d

dx
(x)ϕ(x)− d

dx
(0)ϕ(0) +

∫ x

0

d

dx
(ϕ(y))dy

]
=f ′(x)− λ[ϕ(x)− 0 + 0]

=f ′(x)− λϕ(x).

Moreover, since f(0) = 0, the solution ϕ to the integral equation (3) satisfies the
condition

ϕ(0) = f(0)− λ
∫ 0

0
ϕ(y)dy = 0− 0 = 0.

Thus, the integral equation (3) can be re-expressed as a boundary value problem{
ϕ′(x) + λϕ(x) = f ′(x),

ϕ(0) = 0.
(j)

(b) Express the resulting differential equation as L[ϕ] = f ′.

Sol. In view of the boundary value problem (j), we define the differential operator

L[·] :=
d

dx
[·] + λI[·], (k)

where I is the identity map. Having defined L in Eq. (k), one can rewrite Eq. (j) as

L[ϕ](x) = f ′(x).
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(c) Show that the operator L is linear.

Sol. It is evident that L is a linear differential operator. Indeed, for all sufficiently smooth
functions ϕ1 and ϕ2, and constants c1, c2 ∈ R,

L[c1ϕ1 + c2ϕ2](x) =
d

dx
[c1ϕ1 + c2ϕ2] + λ [c1ϕ1 + c2ϕ2]

=c1
d

dx
[ϕ1] + c2

d

dx
[ϕ2] + c1λ [ϕ1] + c2λ [ϕ2]

=c1

(
d

dx
[ϕ1] + λϕ1

)
+ c2

(
d

dx
[ϕ2] + λϕ2

)
=c1L[ϕ1] + c1L[ϕ1],

and

L[0] =
d

dx
(0) + λ0 = 0.

“Your problem isn’t the problem, it’s your attitude about the problem.” — Ann
Brashares.
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