Defining futures

Give your best short while understanding and solving the problem set. I want your honest effort (no copying). It won't matter if you make mistakes, after all everybody does make mistakes when learning something new. That's how we learn!
Q. 1 Classify the following integral equations as Volterra, Fredholm, linear, non-linear, homogeneous, non-homogeneous, singular, non-singular, first kind, and second kind.
a. $\int_{a}^{x}\left(x^{2} t-x t^{2}\right) y(t) d t=f(x)$
b. $\int_{0}^{1} \frac{\sqrt{f(t)}}{x-t} d t=1-x+f(x)$
c. $\lambda \int_{0}^{+\infty} e^{-s t} f(t) d t=f(s), \quad \lambda \in \mathbb{R}, \quad s \in \mathbb{C}, \quad \lambda \neq 0$
d. $\int_{0}^{x} \frac{\sin (t) g(t)}{\sqrt{x-t}} d t=g(x)$
e. $\int_{0}^{1}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{t}}\right) v(t) d t=\lambda f(x)+v(t)$
Q. 2 Consider the integral equation

$$
\begin{equation*}
v(x)=e^{x}+\lambda \int_{1}^{2}\left(\frac{1+y}{x}\right) v(y) d y \tag{1}
\end{equation*}
$$

(a) Solve the integral equations (1) and identify its resolvent kernel.
(b) Find the characteristic values and associated non-trivial solutions (if any) of the associated homogeneous equation to (1).
Q. 3 Consider the integral equation

$$
\begin{equation*}
h(y)=\sin y+\lambda \int_{0}^{\pi} \cos y \sin z h(z) d z \tag{2}
\end{equation*}
$$

(a) Solve the integral equation and identify the resolvent kernel.
(b) Find eigenvalues and the corresponding eigen-functions (if any).
Q. 4 Consider the problem of finding $\varphi(x)$ from the integral equations

$$
\begin{equation*}
\varphi(x)=f(x)-\lambda \int_{0}^{x} \varphi(y) d y \tag{3}
\end{equation*}
$$

where $f(x)$ is a known, real continuous function with continuous first derivative and $f(0)=0$.
(a) Show that this problem may be re-expressed as an ordinary differential equation with suitable boundary condition. (Hint: Recall the Leibniz rule

$$
\frac{d}{d x} \int_{\alpha(x)}^{\beta(x)} \kappa(x, y) d y=\frac{d \beta}{d x} \kappa(x, \beta(x))-\frac{d \alpha}{d x} \kappa(x, \alpha(x))+\int_{\alpha(x)}^{\beta(x)} \frac{\partial}{\partial x}(\kappa(x, y)) d y,
$$

discussed in the class).
(b) Express the resulting differential equation as $L[\varphi]=f^{\prime}$.
(c) Show that the operator L is linear.

"Your problem isn't the problem, it's your attitude about the problem." - Ann Brashares.

