
School of Natural Sciences
Department of Mathematics

Assignment 2 (Integral Equations), Spring 2020

Due Date: February 24, 2020

Green’s Function of Sturm-Liouville Problems

Introduction

The homogeneous differential equation
d2y

dx2
= 0,

can be solved very easily and the solution is y = Ax+ B (a straight line). The constants can be
found if boundary conditions are given. Similarly, the homogeneous equation

d2y

dx2
+ k2y = 0, (1)

can be solved to get

y = A sin kx+B cos kx. (2)

Thus, there are simple techniques available to solve homogeneous equations. But, if we replace
them with source terms like

d2y

dx2
= lnx, and

d2y

dx2
+ k2y = tanx, (3)

then the problems become difficult to solve.
The most general form of the second order linear ordinary differential operator is the Sturm-

Liouville (SL) operator given by

L[y[(x) :=
d

dx

(
p(x)

dy

dx

)
+ q(x)y. (4)

Any second order ordinary linear differential equation

P1(x)
d2y

dx2
+ P2(x)

dy

dx
+Q(x)y = F (x), (5)

can be converted to an SL problem L[y](x) = f(x) using the integrating factor

µ(x) :=
1

P1(x)
exp

(∫
P2(x)

P1(x)
dx

)
, (6)

with

p(x) := µ(x)P1(x), q(x) := µ(x)Q(x) and f(x) := µ(x)F (x). (7)
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Of course, P1(x) is assumed positive for all x. We restrict our discussion to the case when x
belongs to a bounded interval [a, b], and P1, P2, Q and F are assumed continuous.

Our goal is to determine a function G(x, s) so that the general solution of

L[y] =
d

dx

[
p(x)

dy

dx

]
− q(x)y = f(x), ∀x ∈ (a, b) (8)

αy(a) + β
dy

dx
(a) = 0, (9)

γy(b) + δ
dy

dx
(b) = 0 (10)

can be written as

y(x) =

∫ b

a
G(x, s)f(s)ds, (11)

where α, β, γ and δ are known constants. Such a function is called a Green’s function, named after
the British mathematical physicist George Green (1793-1841). Green’s function can be of great
utility as it reduces the problem of solving (8) subject to boundary conditions (9)-(10) to the task
of computing a single integral (11).

For simplicity and for understanding the procedural details to arrive at the Green’s function, we

consider a simple example of the operator

(
d2y

dx2
+ k2

)
(known as the one-dimensional Helmholtz

operator, generally, linked to the motion of strings and waves, and k = ω/c is the wave-number
defined in terms of the frequency of the mechanical oscillations ω and speed of the wave c).

Problem Set

We consider the boundary value problem

d2y

dx2
+ k2y = f(x), ∀x ∈ (0, π), (12)

y(0) = 0, (13)

dy

dx
(π) = 0, (14)

where k 6= 0. (Note that p(x) = 1, q(x) = −k2, a = 0, b = π, α = 1, β = 0, γ = 0, δ = 1.)

Q1. Find two linearly independent solutions of the associated homogeneous equation
d2y

dx2
+k2y =

0 and use them for deriving the complementary solution yc.

Sol. Note that (12) is a constant coefficient equation and the characteristic equation of the
associated homogeneous equation is m2 + k2 = 0. Thus, the roots of the characteristic
equation are given by m = ±ιk and the complementary solution is given by

yc(x) := c1 sin(kx) + c2 cos(kx).

The two linearly independent solutions are sin(kx) and cos(kx).
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Q2. Use yc to get two solutions y1 and y2 satisfying individual boundary conditions (13) and
(14), respectively. (Hint: Impose boundary condition (13) on yc and eliminate one constant
to get y1. Then, impose boundary condition (14) on yc (afresh) and get y2).

Sol. Imposing boundary conditions (13) on yc provides 0 = yc(0) = c1 sin(0) + c2 cos(0) = c2.
Thus,

yc := c1 sin(kx),

is a solution to the associated homogeneous equations that satisfies boundary condition (13).
Therefore, we set y1 = sin(kx).

Similarly, imposing boundary conditions (14) on yc gives

0 = y′c(π) = c1 cos(kπ)− c2 sin(kπ) =⇒ c1 = c2

(
sin(kπ)

cos(kπ)

)
,

provided k 6= (2n+ 1)/2 for all n ∈ Z. Thus, substituting the value of c1 back in yc renders

yc(x) =c2

(
sin(kπ)

cos(kπ)
sin(kx) + cos(kx)

)
=c2

(cos(kx) cos(kπ) + sin(kx) sin(kπ))

cos(kπ)

=
c2

cos(kπ)
cos(k(x− π)).

Therefore, we choose y2 := cos(kπ)/ cos(k(x − π)) It can be easily verified that y1 satisfies
(13) and y2 satisfies (14) in addition to the homogeneous equation.

We could have eliminated c2 instead of c1. What do you think would change in y2? We
could also have neglected the constant cos(kπ) in the denominator to simply choose y2(x) =
cos(k(x− π)), what effect it will have in your opinion?

Q3. Find the Wronskian, w(y1, y2), of the solutions y1 and y2 obtained in Q2. Show that y1 and
y2 are linearly independent.

Sol. Remember that w(y1, y2) = y1y
′
2 − y′1y2. Since

y1(x) = sin(kx), y2(x) =
cos(k(x− π))

cos(kπ)
, y′1(x) = k cos(kx) and y′2(x) = −k sin(k(x− π))

cos(kπ)
,

we have

w(y1, y2) =− k
[

sin(kx) sin(k(x− π)) + cos(kx) cos(k(x− π))

cos(kπ)

]
=− k

[
cos(kx− k(x− π))

cos(kπ)

]
= −k.

Since w(y1, y2) 6= 0 (recall that k 6= 0), the functions y1 and y2 are linearly independent.
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Q4. In order to derive a particular solution of (12), define yp := c1(x)y1(x) + c2(x)y2(x) as in
the method of variation of parameters for finding particular solutions. Show that

c1(x) = −
∫ x

0

y2(s)f(s)

w(y1, y2)(s)
ds and c2(x) =

∫ x

0

y1(s)f(s)

w(y1, y2)(s)
ds. (15)

Sol. Let us recall the method of variation of parameters. We first differentiate yp(x) := c1(x)y1(x)+
c2(x)y2(x) to get

y′p(x) =
(
c1(x)y′1(x) + c2(x)y′2(x)

)
+
(
c′1(x)y1(x) + c′2(x)y2(x)

)
.

and set

c′1(x)y1(x) + c′2(x)y2(x) = 0. (a)

Note that this is an assumption to simplify the derivative y′p(x), (however, it does not pose
problem!). We differentiate the reduced form of y′p again to get

y′′p(x) =
(
c1(x)y′′1(x) + c2(x)y′′2(x)

)
+
(
c′1(x)y′1(x) + c′2(x)y′2(x)

)
. (16)

Substituting the expressions for yp and y′′p in (12) and simplifying the resultant, we arrive at

c1(x)

(
d2y1
dx2

+ k2y1

)
︸ ︷︷ ︸

=0

+c2(x)

(
d2y2
dx2

+ k2y2

)
︸ ︷︷ ︸

=0

+
(
c′1(x)y′1(x) + c′2(x)y′2(x)

)
= f(x).

This gives

c′1(x)y′1(x) + c′2(x)y′2(x) = f(x). (b)

We find the functions c′1 and c′2 by solving the system of equations (a) and (b), which has a
unique solution because w(y1, y2) 6= 0. By Cramer’s rule

c′1(x) = − y2(x)f(x)

w(y1, y2)(x)
and c′2(x) =

y1(x)f(x)

w(y1, y2)(x)
,

from where we get the required forms upon integration from 0 to x. Therefore, yp appears
to be

yp(x) =− y1(x)

∫ x

0

y2(s)f(s)

w(y1, y2)(s)
ds+ y2(x)

∫ x

0

y1(s)f(s)

w(y1, y2)(s)
ds

=−
∫ x

0

sin(kx) cos(k(s− π))

k cos(kπ)
f(s)ds+

∫ x

0

sin(ks) cos(k(x− π))

k cos(kπ)
f(s)ds.

Q5. Write down the general solution of the equations (12) as y(x) = Ay1(x) + By2(x) + yp(x).
Impose the boundary conditions (13)-(14) simultaneously on y(x) and find the values of
constants A and B (perhaps in terms of integrals).
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Sol. In order to find the values of A and B so that y(x) = Ay1(x) + By2(x) + yp(x) satisfy
the boundary conditions (13)-(14), we must have y(0) = 0 = v′(π). Note that y1(0) = 0,
y2(0) = 1 and yp(0) = 0. Therefore, y(0) = 0 implies

Ay1(0) +By2(0) + yp(0) = 0 =⇒ A(0) +B(1) + (0) = 0 =⇒ B = 0.

Also note that y′1(π) = k cos(kπ) and

y′p(π) = c1(π)y′1(π) + 0 = −
∫ π

0
cos(k(s− π)f(s)ds.

Therefore, y′(π) = 0 provides

0 = Ay′1(π) + y′p(π) = Ak cos(kπ)−
∫ π

0
cos(k(s− π)f(s)ds =⇒ A =

∫ π

0

cos(k(s− π))

k cos(kπ)
f(s)ds.

Hence, the general solution to (12) is given by

y(x) =Ay1(x) + yp(x)

=

∫ π

0

sin(kx) cos(k(s− π))

k cos(kπ)
f(s)ds+

−
∫ x

0

sin(kx) cos(k(s− π))

k cos(kπ)
f(s)ds+

∫ x

0

sin(ks) cos(k(x− π))

k cos(kπ)
f(s)ds

=

∫ π

x

sin(kx) cos(k(s− π))

k cos(kπ)
f(s)ds+

∫ x

0

sin(ks) cos(k(x− π))

k cos(kπ)
f(s)ds.

Q6. Show that y(x) calculated in Q5 can be expressed in the form

y(x) :=

∫ π

0
G(x, s)f(s)ds, (17)

where G(x, s) can be written in the form

G(x, s) :=

{
g1(x, s), s < x,

g2(x, s), x < s.
(18)

Sol. The general solution obtained in the previous question can be rearranged as

y(x) =

∫ π

0
G(x, s)f(s)ds.

by defining the piece-wise function

G(x, s) =


y1(s)y2(x)

w(y1, y2)(s)
s < x,

y1(s)y2(x)

w(y1, y2)(s)
x < s,

or G(x, s) =


sin(ks) cos(k(x− π))

k cos(kπ)
s < x,

sin(kx) cos(k(s− π))

k cos(kπ)
x < s.
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Q7. (Optional) Show that G(x, s) is symmetric, i.e., G(x, s) = G(s, x).

Sol. Note that

G(s, x) =


sin(kx) cos(k(s− π))

k cos(kπ)
x < s,

sin(ks) cos(k(x− π))

k cos(kπ)
s < x,

which is essentially G(x, s).

Q8. (Optional) Show that G(x, s) is continuous at x = s.

Sol. Note that

G(x, x) =
sin(kx) cos(k(x− π))

k cos(kπ)
.

Moreover, for ε > 0

lim
x→s+ε

G(x, s) = lim
ε→0

G(s+ ε, s) = lim
ε→0

sin(k(s) cos(k(s+ ε− π))

k cos(kπ)
=

sin(k(s) cos(k(s− π))

k cos(kπ)
,

lim
x→s−ε

G(x, s) = lim
ε→0

G(s− ε, s) = lim
ε→0

sin(k(s− ε) cos(k(s− π))

k cos(kπ)
=

sin(k(s) cos(k(s− π))

k cos(kπ)
.

Therefore, G(x, s) is continuous at x = s.

Q9. (Optional) Show that
dg1
dx

(x, s)
∣∣∣
x=s

=
dg2
dx

(x, s)
∣∣∣
x=s

+1 since p(x) = 1 here. (Hint: Integrate

the equation
d2

dx2
[G](x, s)+k2G(x, s) = δ(x−s) over infinitesimally small interval [s−ε, s+ε]

and take limit ε→ 0. Here, δ is the Dirac mass.)

Sol. Note that

lim
ε→0

∫ s+ε

s−ε

(
d2

dx2
[G](x, s) + k2G(x, s)

)
dx = lim

ε→0

∫ s+ε

s−ε
δ(x− s)dx.

Since, ∫ s+ε

s−ε
δ(x− s)dx = 1,

we have

lim
ε→0

[
d

dx
[G](x, s)

]s+ε
s−ε

+ k2 lim
ε→0

(∫ s+ε

s−ε
G(x, s)

)
dx = lim

ε→0
1.
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Since, G(x, s) is continuous at x = s, it has a continuous primitive (say) K(x, s), i.e., we
have

dK(x, s)

dx
= G(x, s).

Therefore,

lim
ε→0

(∫ s+ε

s−ε
G(x, s)

)
dx = lim

ε→0

(∫ s+ε

s−ε

dK(x, s)

dx

)
dx = lim

ε→0

[
K(x, s)

]s+ε
s−ε

.

Since, K(x, s) is continuous at x = s, we have

lim
ε→0

[
K(x, s)

]s+ε
s−ε

= lim
ε→0

K(x, s)
∣∣∣
x=s+ε

− lim
ε→0

K(x, s)
∣∣∣
x=s−ε

= K(s, s)−K(s, s) = 0

Therefore,

lim
ε→0

[
d

dx
[G](x, s)

]s+ε
s−ε

+ k2(0) = 1,

or,

lim
ε→0

[
dG

dx
(x, s)

∣∣∣
x=s+ε

− dG

dx
(x, s)

∣∣∣
x=s−ε

]
= 1.

Setting g1(x, s) := G(x, s) for s < x and g2(x, s) := G(x, s) for x < s, we can write the
above equation as

lim
ε→0

[
dg1
dx

(x, s)
∣∣∣
x=s+ε

− dg2
dx

(x, s)
∣∣∣
x=s−ε

]
= 1.

Since, g1 and g2 are continuous over the intervals [0, s] and [s, π], we finally can pass on the
limit to arrive at [

dg1
dx

(x, s)
∣∣∣
x=s
− dg2
dx

(x, s)
∣∣∣
x=s

]
= 1.

“If you really want to do something, you’ll find a way. If you don’t, you’ll find an
excuse.” — Jim Rohn.
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