School of Natural Sciences

Department of Mathematics

Green's Function of Sturm-Liouville Problems

Introduction

The homogeneous differential equation

$$
\frac{d^{2} y}{d x^{2}}=0,
$$

can be solved very easily and the solution is $y=A x+B$ (a straight line). The constants can be found if boundary conditions are given. Similarly, the homogeneous equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+k^{2} y=0 \tag{1}
\end{equation*}
$$

can be solved to get

$$
\begin{equation*}
y=A \sin k x+B \cos k x . \tag{2}
\end{equation*}
$$

Thus, there are simple techniques available to solve homogeneous equations. But, if we replace them with source terms like

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\ln x, \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}+k^{2} y=\tan x, \tag{3}
\end{equation*}
$$

then the problems become difficult to solve.
The most general form of the second order linear ordinary differential operator is the SturmLiouville (SL) operator given by

$$
\begin{equation*}
\mathcal{L}\left[y \left[(x):=\frac{d}{d x}\left(p(x) \frac{d y}{d x}\right)+q(x) y .\right.\right. \tag{4}
\end{equation*}
$$

Any second order ordinary linear differential equation

$$
\begin{equation*}
P_{1}(x) \frac{d^{2} y}{d x^{2}}+P_{2}(x) \frac{d y}{d x}+Q(x) y=F(x), \tag{5}
\end{equation*}
$$

can be converted to an SL problem $\mathcal{L}[y](x)=f(x)$ using the integrating factor

$$
\begin{equation*}
\mu(x):=\frac{1}{P_{1}(x)} \exp \left(\int \frac{P_{2}(x)}{P_{1}(x)} d x\right), \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
p(x):=\mu(x) P_{1}(x), \quad q(x):=\mu(x) Q(x) \quad \text { and } \quad f(x):=\mu(x) F(x) . \tag{7}
\end{equation*}
$$

Of course, $P_{1}(x)$ is assumed positive for all x. We restrict our discussion to the case when x belongs to a bounded interval $[a, b]$, and P_{1}, P_{2}, Q and F are assumed continuous.

Our goal is to determine a function $G(x, s)$ so that the general solution of

$$
\begin{align*}
& \mathcal{L}[y]=\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]-q(x) y=f(x), \quad \forall x \in(a, b) \tag{8}\\
& \alpha y(a)+\beta \frac{d y}{d x}(a)=0 \tag{9}\\
& \gamma y(b)+\delta \frac{d y}{d x}(b)=0 \tag{10}
\end{align*}
$$

can be written as

$$
\begin{equation*}
y(x)=\int_{a}^{b} G(x, s) f(s) d s \tag{11}
\end{equation*}
$$

where α, β, γ and δ are known constants. Such a function is called a Green's function, named after the British mathematical physicist George Green (1793-1841). Green's function can be of great utility as it reduces the problem of solving (8) subject to boundary conditions (9)-(10) to the task of computing a single integral (11).

For simplicity and for understanding the procedural details to arrive at the Green's function, we consider a simple example of the operator $\left(\frac{d^{2} y}{d x^{2}}+k^{2}\right)$ (known as the one-dimensional Helmholtz operator, generally, linked to the motion of strings and waves, and $k=\omega / c$ is the wave-number defined in terms of the frequency of the mechanical oscillations ω and speed of the wave c).

Problem Set

We consider the boundary value problem

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}+k^{2} y=f(x), \quad \forall x \in(0, \pi) \tag{12}\\
& y(0)=0 \tag{13}\\
& \frac{d y}{d x}(\pi)=0 \tag{14}
\end{align*}
$$

where $k \neq 0$. (Note that $p(x)=1, q(x)=-k^{2}, a=0, b=\pi, \alpha=1, \beta=0, \gamma=0, \delta=1$.)
Q1. Find two linearly independent solutions of the associated homogeneous equation $\frac{d^{2} y}{d x^{2}}+k^{2} y=$ 0 and use them for deriving the complementary solution y_{c}.

Sol. Note that (12) is a constant coefficient equation and the characteristic equation of the associated homogeneous equation is $m^{2}+k^{2}=0$. Thus, the roots of the characteristic equation are given by $m= \pm \iota k$ and the complementary solution is given by

$$
y_{c}(x):=c_{1} \sin (k x)+c_{2} \cos (k x)
$$

The two linearly independent solutions are $\sin (k x)$ and $\cos (k x)$.

Q2. Use y_{c} to get two solutions y_{1} and y_{2} satisfying individual boundary conditions (13) and (14), respectively. (Hint: Impose boundary condition (13) on y_{c} and eliminate one constant to get y_{1}. Then, impose boundary condition (14) on y_{c} (afresh) and get y_{2}).

Sol. Imposing boundary conditions (13) on y_{c} provides $0=y_{c}(0)=c_{1} \sin (0)+c_{2} \cos (0)=c_{2}$. Thus,

$$
y_{c}:=c_{1} \sin (k x),
$$

is a solution to the associated homogeneous equations that satisfies boundary condition (13). Therefore, we set $y_{1}=\sin (k x)$.
Similarly, imposing boundary conditions (14) on y_{c} gives

$$
0=y_{c}^{\prime}(\pi)=c_{1} \cos (k \pi)-c_{2} \sin (k \pi) \Longrightarrow c_{1}=c_{2}\left(\frac{\sin (k \pi)}{\cos (k \pi)}\right),
$$

provided $k \neq(2 n+1) / 2$ for all $n \in \mathbb{Z}$. Thus, substituting the value of c_{1} back in y_{c} renders

$$
\begin{aligned}
y_{c}(x) & =c_{2}\left(\frac{\sin (k \pi)}{\cos (k \pi)} \sin (k x)+\cos (k x)\right) \\
& =c_{2} \frac{(\cos (k x) \cos (k \pi)+\sin (k x) \sin (k \pi))}{\cos (k \pi)} \\
& =\frac{c_{2}}{\cos (k \pi)} \cos (k(x-\pi)) .
\end{aligned}
$$

Therefore, we choose $y_{2}:=\cos (k \pi) / \cos (k(x-\pi))$ It can be easily verified that y_{1} satisfies (13) and y_{2} satisfies (14) in addition to the homogeneous equation.

We could have eliminated c_{2} instead of c_{1}. What do you think would change in y_{2} ? We could also have neglected the constant $\cos (k \pi)$ in the denominator to simply choose $y_{2}(x)=$ $\cos (k(x-\pi))$, what effect it will have in your opinion?

Q3. Find the Wronskian, $w\left(y_{1}, y_{2}\right)$, of the solutions y_{1} and y_{2} obtained in Q2. Show that y_{1} and y_{2} are linearly independent.

Sol. Remember that $w\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$. Since $y_{1}(x)=\sin (k x), \quad y_{2}(x)=\frac{\cos (k(x-\pi))}{\cos (k \pi)}, \quad y_{1}^{\prime}(x)=k \cos (k x)$ and $y_{2}^{\prime}(x)=-\frac{k \sin (k(x-\pi))}{\cos (k \pi)}$, we have

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right) & =-k\left[\frac{\sin (k x) \sin (k(x-\pi))+\cos (k x) \cos (k(x-\pi))}{\cos (k \pi)}\right] \\
& =-k\left[\frac{\cos (k x-k(x-\pi))}{\cos (k \pi)}\right]=-k .
\end{aligned}
$$

Since $w\left(y_{1}, y_{2}\right) \neq 0$ (recall that $k \neq 0$), the functions y_{1} and y_{2} are linearly independent.

Q4. In order to derive a particular solution of (12), define $y_{p}:=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x)$ as in the method of variation of parameters for finding particular solutions. Show that

$$
\begin{equation*}
c_{1}(x)=-\int_{0}^{x} \frac{y_{2}(s) f(s)}{w\left(y_{1}, y_{2}\right)(s)} d s \quad \text { and } \quad c_{2}(x)=\int_{0}^{x} \frac{y_{1}(s) f(s)}{w\left(y_{1}, y_{2}\right)(s)} d s . \tag{15}
\end{equation*}
$$

Sol. Let us recall the method of variation of parameters. We first differentiate $y_{p}(x):=c_{1}(x) y_{1}(x)+$ $c_{2}(x) y_{2}(x)$ to get

$$
y_{p}^{\prime}(x)=\left(c_{1}(x) y_{1}^{\prime}(x)+c_{2}(x) y_{2}^{\prime}(x)\right)+\left(c_{1}^{\prime}(x) y_{1}(x)+c_{2}^{\prime}(x) y_{2}(x)\right) .
$$

and set

$$
\begin{equation*}
c_{1}^{\prime}(x) y_{1}(x)+c_{2}^{\prime}(x) y_{2}(x)=0 . \tag{a}
\end{equation*}
$$

Note that this is an assumption to simplify the derivative $y_{p}^{\prime}(x)$, (however, it does not pose problem!). We differentiate the reduced form of y_{p}^{\prime} again to get

$$
\begin{equation*}
y_{p}^{\prime \prime}(x)=\left(c_{1}(x) y_{1}^{\prime \prime}(x)+c_{2}(x) y_{2}^{\prime \prime}(x)\right)+\left(c_{1}^{\prime}(x) y_{1}^{\prime}(x)+c_{2}^{\prime}(x) y_{2}^{\prime}(x)\right) . \tag{16}
\end{equation*}
$$

Substituting the expressions for y_{p} and $y_{p}^{\prime \prime}$ in (12) and simplifying the resultant, we arrive at

$$
c_{1}(x) \underbrace{\left(\frac{d^{2} y_{1}}{d x^{2}}+k^{2} y_{1}\right)}_{=0}+c_{2}(x) \underbrace{\left(\frac{d^{2} y_{2}}{d x^{2}}+k^{2} y_{2}\right)}_{=0}+\left(c_{1}^{\prime}(x) y_{1}^{\prime}(x)+c_{2}^{\prime}(x) y_{2}^{\prime}(x)\right)=f(x) .
$$

This gives

$$
\begin{equation*}
c_{1}^{\prime}(x) y_{1}^{\prime}(x)+c_{2}^{\prime}(x) y_{2}^{\prime}(x)=f(x) . \tag{b}
\end{equation*}
$$

We find the functions c_{1}^{\prime} and c_{2}^{\prime} by solving the system of equations (a) and (b), which has a unique solution because $w\left(y_{1}, y_{2}\right) \neq 0$. By Cramer's rule

$$
c_{1}^{\prime}(x)=-\frac{y_{2}(x) f(x)}{w\left(y_{1}, y_{2}\right)(x)} \quad \text { and } \quad c_{2}^{\prime}(x)=\frac{y_{1}(x) f(x)}{w\left(y_{1}, y_{2}\right)(x)},
$$

from where we get the required forms upon integration from 0 to x. Therefore, y_{p} appears to be

$$
\begin{aligned}
y_{p}(x) & =-y_{1}(x) \int_{0}^{x} \frac{y_{2}(s) f(s)}{w\left(y_{1}, y_{2}\right)(s)} d s+y_{2}(x) \int_{0}^{x} \frac{y_{1}(s) f(s)}{w\left(y_{1}, y_{2}\right)(s)} d s \\
& =-\int_{0}^{x} \frac{\sin (k x) \cos (k(s-\pi))}{k \cos (k \pi)} f(s) d s+\int_{0}^{x} \frac{\sin (k s) \cos (k(x-\pi))}{k \cos (k \pi)} f(s) d s .
\end{aligned}
$$

Q5. Write down the general solution of the equations (12) as $y(x)=A y_{1}(x)+B y_{2}(x)+y_{p}(x)$. Impose the boundary conditions (13)-(14) simultaneously on $y(x)$ and find the values of constants A and B (perhaps in terms of integrals).

Sol. In order to find the values of A and B so that $y(x)=A y_{1}(x)+B y_{2}(x)+y_{p}(x)$ satisfy the boundary conditions (13)-(14), we must have $y(0)=0=v^{\prime}(\pi)$. Note that $y_{1}(0)=0$, $y_{2}(0)=1$ and $y_{p}(0)=0$. Therefore, $y(0)=0$ implies

$$
A y_{1}(0)+B y_{2}(0)+y_{p}(0)=0 \Longrightarrow A(0)+B(1)+(0)=0 \Longrightarrow B=0
$$

Also note that $y_{1}^{\prime}(\pi)=k \cos (k \pi)$ and

$$
y_{p}^{\prime}(\pi)=c_{1}(\pi) y_{1}^{\prime}(\pi)+0=-\int_{0}^{\pi} \cos (k(s-\pi) f(s) d s
$$

Therefore, $y^{\prime}(\pi)=0$ provides $0=A y_{1}^{\prime}(\pi)+y_{p}^{\prime}(\pi)=A k \cos (k \pi)-\int_{0}^{\pi} \cos \left(k(s-\pi) f(s) d s \Longrightarrow A=\int_{0}^{\pi} \frac{\cos (k(s-\pi))}{k \cos (k \pi)} f(s) d s\right.$.
Hence, the general solution to (12) is given by

$$
\begin{aligned}
y(x)= & A y_{1}(x)+y_{p}(x) \\
= & \int_{0}^{\pi} \frac{\sin (k x) \cos (k(s-\pi))}{k \cos (k \pi)} f(s) d s+ \\
& -\int_{0}^{x} \frac{\sin (k x) \cos (k(s-\pi))}{k \cos (k \pi)} f(s) d s+\int_{0}^{x} \frac{\sin (k s) \cos (k(x-\pi))}{k \cos (k \pi)} f(s) d s \\
= & \int_{x}^{\pi} \frac{\sin (k x) \cos (k(s-\pi))}{k \cos (k \pi)} f(s) d s+\int_{0}^{x} \frac{\sin (k s) \cos (k(x-\pi))}{k \cos (k \pi)} f(s) d s .
\end{aligned}
$$

Q6. Show that $y(x)$ calculated in Q5 can be expressed in the form

$$
\begin{equation*}
y(x):=\int_{0}^{\pi} G(x, s) f(s) d s \tag{17}
\end{equation*}
$$

where $G(x, s)$ can be written in the form

$$
G(x, s):= \begin{cases}g_{1}(x, s), & s<x \tag{18}\\ g_{2}(x, s), & x<s\end{cases}
$$

Sol. The general solution obtained in the previous question can be rearranged as

$$
y(x)=\int_{0}^{\pi} G(x, s) f(s) d s
$$

by defining the piece-wise function

$$
G(x, s)=\left\{\begin{array}{ll}
\frac{y_{1}(s) y_{2}(x)}{w\left(y_{1}, y_{2}\right)(s)} & s<x, \\
\frac{y_{1}(s) y_{2}(x)}{w\left(y_{1}, y_{2}\right)(s)} & x<s,
\end{array} \quad \text { or } \quad G(x, s)= \begin{cases}\frac{\sin (k s) \cos (k(x-\pi))}{k \cos (k \pi)} & s<x \\
\frac{\sin (k x) \cos (k(s-\pi))}{k \cos (k \pi)} & x<s\end{cases}\right.
$$

Q7. (Optional) Show that $G(x, s)$ is symmetric, i.e., $G(x, s)=G(s, x)$.
Sol. Note that

$$
G(s, x)= \begin{cases}\frac{\sin (k x) \cos (k(s-\pi))}{k \cos (k \pi)} & x<s, \\ \frac{\sin (k s) \cos (k(x-\pi))}{k \cos (k \pi)} & s<x,\end{cases}
$$

which is essentially $G(x, s)$.
Q8. (Optional) Show that $G(x, s)$ is continuous at $x=s$.
Sol. Note that

$$
G(x, x)=\frac{\sin (k x) \cos (k(x-\pi))}{k \cos (k \pi)} .
$$

Moreover, for $\epsilon>0$

$$
\begin{aligned}
& \lim _{x \rightarrow s+\epsilon} G(x, s)=\lim _{\epsilon \rightarrow 0} G(s+\epsilon, s)=\lim _{\epsilon \rightarrow 0} \frac{\sin (k(s) \cos (k(s+\epsilon-\pi))}{k \cos (k \pi)}=\frac{\sin (k(s) \cos (k(s-\pi))}{k \cos (k \pi)}, \\
& \lim _{x \rightarrow s-\epsilon} G(x, s)=\lim _{\epsilon \rightarrow 0} G(s-\epsilon, s)=\lim _{\epsilon \rightarrow 0} \frac{\sin (k(s-\epsilon) \cos (k(s-\pi))}{k \cos (k \pi)}=\frac{\sin (k(s) \cos (k(s-\pi))}{k \cos (k \pi)} .
\end{aligned}
$$

Therefore, $G(x, s)$ is continuous at $x=s$.
Q9. (Optional) Show that $\left.\frac{d g_{1}}{d x}(x, s)\right|_{x=s}=\left.\frac{d g_{2}}{d x}(x, s)\right|_{x=s}+1$ since $p(x)=1$ here. (Hint: Integrate the equation $\frac{d^{2}}{d x^{2}}[G](x, s)+k^{2} G(x, s)=\delta(x-s)$ over infinitesimally small interval $[s-\epsilon, s+\epsilon]$ and take limit $\epsilon \rightarrow 0$. Here, δ is the Dirac mass.)

Sol. Note that

$$
\lim _{\epsilon \rightarrow 0} \int_{s-\epsilon}^{s+\epsilon}\left(\frac{d^{2}}{d x^{2}}[G](x, s)+k^{2} G(x, s)\right) d x=\lim _{\epsilon \rightarrow 0} \int_{s-\epsilon}^{s+\epsilon} \delta(x-s) d x .
$$

Since,

$$
\int_{s-\epsilon}^{s+\epsilon} \delta(x-s) d x=1
$$

we have

$$
\lim _{\epsilon \rightarrow 0}\left[\frac{d}{d x}[G](x, s)\right]_{s-\epsilon}^{s+\epsilon}+k^{2} \lim _{\epsilon \rightarrow 0}\left(\int_{s-\epsilon}^{s+\epsilon} G(x, s)\right) d x=\lim _{\epsilon \rightarrow 0} 1 .
$$

Since, $G(x, s)$ is continuous at $x=s$, it has a continuous primitive (say) $K(x, s)$, i.e., we have

$$
\frac{d K(x, s)}{d x}=G(x, s)
$$

Therefore,

$$
\lim _{\epsilon \rightarrow 0}\left(\int_{s-\epsilon}^{s+\epsilon} G(x, s)\right) d x=\lim _{\epsilon \rightarrow 0}\left(\int_{s-\epsilon}^{s+\epsilon} \frac{d K(x, s)}{d x}\right) d x=\lim _{\epsilon \rightarrow 0}[K(x, s)]_{s-\epsilon}^{s+\epsilon}
$$

Since, $K(x, s)$ is continuous at $x=s$, we have

$$
\lim _{\epsilon \rightarrow 0}[K(x, s)]_{s-\epsilon}^{s+\epsilon}=\left.\lim _{\epsilon \rightarrow 0} K(x, s)\right|_{x=s+\epsilon}-\left.\lim _{\epsilon \rightarrow 0} K(x, s)\right|_{x=s-\epsilon}=K(s, s)-K(s, s)=0
$$

Therefore,

$$
\lim _{\epsilon \rightarrow 0}\left[\frac{d}{d x}[G](x, s)\right]_{s-\epsilon}^{s+\epsilon}+k^{2}(0)=1,
$$

or,

$$
\lim _{\epsilon \rightarrow 0}\left[\left.\frac{d G}{d x}(x, s)\right|_{x=s+\epsilon}-\left.\frac{d G}{d x}(x, s)\right|_{x=s-\epsilon}\right]=1
$$

Setting $g_{1}(x, s):=G(x, s)$ for $s<x$ and $g_{2}(x, s):=G(x, s)$ for $x<s$, we can write the above equation as

$$
\lim _{\epsilon \rightarrow 0}\left[\left.\frac{d g_{1}}{d x}(x, s)\right|_{x=s+\epsilon}-\left.\frac{d g_{2}}{d x}(x, s)\right|_{x=s-\epsilon}\right]=1
$$

Since, g_{1} and g_{2} are continuous over the intervals $[0, s]$ and $[s, \pi]$, we finally can pass on the limit to arrive at

$$
\left[\left.\frac{d g_{1}}{d x}(x, s)\right|_{x=s}-\left.\frac{d g_{2}}{d x}(x, s)\right|_{x=s}\right]=1
$$

[^0]
[^0]: 'If you really want to do something, you'll find a way. If you don't, you'll find an excuse." - Jim Rohn.

