School of Natural Sciences

Department of Mathematics

Green's Function of Sturm-Liouville Problems

Introduction

The homogeneous differential equation

$$
\frac{d^{2} y}{d x^{2}}=0,
$$

can be solved very easily and the solution is $y=A x+B$ (a straight line). The constants can be found if boundary conditions are given. Similarly, the homogeneous equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+k^{2} y=0 \tag{1}
\end{equation*}
$$

can be solved to get

$$
\begin{equation*}
y=A \sin k x+B \cos k x . \tag{2}
\end{equation*}
$$

Thus, there are simple techniques available to solve homogeneous equations. But, if we replace them with source terms like

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\ln x, \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}+k^{2} y=\tan x, \tag{3}
\end{equation*}
$$

then the problems become difficult to solve.
The most general form of the second order linear ordinary differential operator is the SturmLiouville (SL) operator given by

$$
\begin{equation*}
\mathcal{L}\left[y \left[(x):=\frac{d}{d x}\left(p(x) \frac{d y}{d x}\right)+q(x) y .\right.\right. \tag{4}
\end{equation*}
$$

Any second order ordinary linear differential equation

$$
\begin{equation*}
P_{1}(x) \frac{d^{2} y}{d x^{2}}+P_{2}(x) \frac{d y}{d x}+Q(x) y=F(x), \tag{5}
\end{equation*}
$$

can be converted to an SL problem $\mathcal{L}[y](x)=f(x)$ using the integrating factor

$$
\begin{equation*}
\mu(x):=\frac{1}{P_{1}(x)} \exp \left(\int \frac{P_{2}(x)}{P_{1}(x)} d x\right), \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
p(x):=\mu(x) P_{1}(x), \quad q(x):=\mu(x) Q(x) \quad \text { and } \quad f(x):=\mu(x) F(x) . \tag{7}
\end{equation*}
$$

Of course, $P_{1}(x)$ is assumed positive for all x. We restrict our discussion to the case when x belongs to a bounded interval $[a, b]$, and P_{1}, P_{2}, Q and F are assumed continuous.

Our goal is to determine a function $G(x, s)$ so that the general solution of

$$
\begin{align*}
& \mathcal{L}[y]=\frac{d}{d x}\left[p(x) \frac{d y}{d x}\right]-q(x) y=f(x), \quad \forall x \in(a, b) \tag{8}\\
& \alpha y(a)+\beta \frac{d y}{d x}(a)=0 \tag{9}\\
& \gamma y(b)+\delta \frac{d y}{d x}(b)=0 \tag{10}
\end{align*}
$$

can be written as

$$
\begin{equation*}
y(x)=\int_{a}^{b} G(x, s) f(s) d s \tag{11}
\end{equation*}
$$

where α, β, γ and δ are known constants. Such a function is called a Green's function, named after the British mathematical physicist George Green (1793-1841). Green's function can be of great utility as it reduces the problem of solving (8) subject to boundary conditions (9)-(10) to the task of computing a single integral (11).

For simplicity and for understanding the procedural details to arrive at the Green's function, we consider a simple example of the operator $\left(\frac{d^{2} y}{d x^{2}}+k^{2}\right)$ (known as the one-dimensional Helmholtz operator, generally, linked to the motion of strings and waves, and $k=\omega / c$ is the wave-number defined in terms of the frequency of the mechanical oscillations ω and speed of the wave c).

Problem Set

We consider the boundary value problem

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}+k^{2} y=f(x), \quad \forall x \in(0, \pi) \tag{12}\\
& y(0)=0 \tag{13}\\
& \frac{d y}{d x}(\pi)=0 \tag{14}
\end{align*}
$$

where $k \neq 0$. (Note that $p(x)=1, q(x)=-k^{2}, a=0, b=\pi, \alpha=1, \beta=0, \gamma=0, \delta=1$.)
Q1. Find two linearly independent solutions of the associated homogeneous equation $\frac{d^{2} y}{d x^{2}}+k^{2} y=$ 0 and use them for deriving the complementary solution y_{c}.

Q2. Use y_{c} to get two solutions y_{1} and y_{2} satisfying individual boundary conditions (13) and (14), respectively. (Hint: Impose boundary condition (13) on y_{c} and eliminate one constant to get y_{1}. Then, impose boundary condition (14) on y_{c} (afresh) and get y_{2}).

Q3. Find the Wronskian, $w\left(y_{1}, y_{2}\right)$, of the solutions y_{1} and y_{2} obtained in Q2. Show that y_{1} and y_{2} are linearly independent.

Q4. In order to derive a particular solution of (12), define $y_{p}:=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x)$ as in the method of variation of parameters for finding particular solutions. Show that

$$
\begin{equation*}
c_{1}(x)=-\int_{0}^{x} \frac{y_{2}(s) f(s)}{w\left(y_{1}, y_{2}\right)(s)} d s \quad \text { and } \quad c_{2}(x)=\int_{0}^{x} \frac{y_{1}(s) f(s)}{w\left(y_{1}, y_{2}\right)(s)} d s \tag{15}
\end{equation*}
$$

Q5. Write down the general solution of the equations (12) as $y(x)=A y_{1}(x)+B y_{2}(x)+y_{p}(x)$. Impose the boundary conditions (13)-(14) simultaneously on $y(x)$ and find the values of constants A and B (perhaps in terms of integrals).

Q6. Show that $y(x)$ calculated in Q5 can be expressed in the form

$$
\begin{equation*}
y(x):=\int_{0}^{\pi} G(x, s) f(s) d s \tag{16}
\end{equation*}
$$

where $G(x, s)$ can be written in the form

$$
G(x, s):= \begin{cases}g_{1}(x, s), & s<x \tag{17}\\ g_{2}(x, s), & x<s\end{cases}
$$

Q7. (Optional) Show that $G(x, s)$ is symmetric, i.e., $G(x, s)=G(s, x)$.
Q8. (Optional) Show that $G(x, s)$ is continuous at $x=s$.
Q9. (Optional) Show that $\left.\frac{d g_{1}}{d x}(x, s)\right|_{x=s}=\left.\frac{d g_{2}}{d x}(x, s)\right|_{x=s}+1$ since $p(x)=1$ here. (Hint: Integrate the equation $\frac{d^{2}}{d x^{2}}[G](x, s)+k^{2} G(x, s)=\delta(x-s)$ over infinitesimally small interval $[s-\epsilon, s+\epsilon]$ and take limit $\epsilon \rightarrow 0$. Here, δ is the Dirac mass.)
"If you really want to do something, you'll find a way. If you don't, you'll find an excuse." - Jim Rohn.

