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GREEN’S FUNCTION OF STURM-LIOUVILLE PROBLEMS

Introduction

The homogeneous differential equation

dy B

g2 Y
can be solved very easily and the solution is y = Ax + B (a straight line). The constants can be
found if boundary conditions are given. Similarly, the homogeneous equation

d?y
) + ka =0, (1)
can be solved to get
y = Asinkx + Bcoskzx. (2)

Thus, there are simple techniques available to solve homogeneous equations. But, if we replace
them with source terms like
d*y d*y 2
@:lnx, and @%—k y = tanz, (3)
then the problems become difficult to solve.
The most general form of the second order linear ordinary differential operator is the Sturm-
Liouwille (SL) operator given by
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Any second order ordinary linear differential equation
d’y dy
Pi(z)— 4+ Py(z)—— =F
(@) 5 + Pola) 2+ Qla)y = (o), 5)

can be converted to an SL problem L[y|(z) = f(x) using the integrating factor

1 Py(x)
p(x) = (@) exp ( Pf(x)dx> , (6)
with
p(z) == p(x)Pi(z),  q(z):=p@)Q) and f(z):= p(x)F(z). (7)



Of course, P;(z) is assumed positive for all . We restrict our discussion to the case when x
belongs to a bounded interval [a,b], and Py, Ps, @ and F' are assumed continuous.
Our goal is to determine a function G(z, s) so that the general solution of

£bl = g [0 ] e = s, vee @y ©)
o(a) + B (a) =0, )
1w(0) + 552 (8) = 0 (10)

can be written as

b
y(z) = / Gl 5) (s)ds, (11)

where «, 3,7 and § are known constants. Such a function is called a Green’s function, named after
the British mathematical physicist George Green (1793-1841). Green’s function can be of great
utility as it reduces the problem of solving (8) subject to boundary conditions (9)-(10) to the task
of computing a single integral (11).

For simplicity and for understanding the procedural details to arrive at the Green’s function, we
d2

consider a simple example of the operator (dl; + k2> (known as the one-dimensional Helmholtz
x

operator, generally, linked to the motion of strings and waves, and k = w/c is the wave-number
defined in terms of the frequency of the mechanical oscillations w and speed of the wave c).

Problem Set

We consider the boundary value problem

2
% + K%y = f(z), Vo € (0,7), (12)
y(0) =0, (13)
W =0 (14

where k # 0. (Note that p(z) =1, ¢(z) = —k*, a=0,b=m,a=1,83=0,vy=0,5 = 1.)
%y

2
dx2+k v=

Q1. Find two linearly independent solutions of the associated homogeneous equation

0 and use them for deriving the complementary solution .

Q2. Use y. to get two solutions y; and ys satisfying individual boundary conditions (13) and
(14), respectively. (Hint: Impose boundary condition (13) on y. and eliminate one constant
to get y1. Then, impose boundary condition (14) on y. (afresh) and get yo2).



Q3.

Q4.

Q5.

Q6.

Qr.
Qs.

Qo.

Find the Wronskian, w(yi,y2), of the solutions y; and y, obtained in Q2. Show that y; and
1o are linearly independent.

In order to derive a particular solution of (12), define y, := ci(z)y1(x) + ca(x)y2(z) as in
the method of variation of parameters for finding particular solutions. Show that

IO g e [F )
)= [ e e = [ e (o)

Write down the general solution of the equations (12) as y(x) = Ayi(z) + By2(z) + yp(x).
Impose the boundary conditions (13)-(14) simultaneously on y(z) and find the values of
constants A and B (perhaps in terms of integrals).

Show that y(z) calculated in Q5 can be expressed in the form

y(z) := /07r G(x,s)f(s)ds, (16)

where G(x, s) can be written in the form

Ja(x,s), s<um,
Cla,s) = {gg(x,s), x < s. (17)

(Optional) Show that G(z, s) is symmetric, i.e., G(z,s) = G(s,x).

(Optional) Show that G(z,s) is continuous at x = s.

d d
(Optional) Show that ﬂ(:U, s) = ﬂ(:z:, s) +1 since p(z) = 1 here. (Hint: Integrate
9 dx T=s dx T=s

d
the equation ) [G](z, s)+k*G(z, s) = §(x—s) over infinitesimally small interval [s—e¢, s+
x

and take limit e — 0. Here, ¢ is the Dirac mass.)

“If you really want to do something, you’ll find a way. If you don’t, you’ll find an

excuse.” — Jim Rohn.



