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A note on elastic noise source localization

Abdul Wahab and Rab Nawaz

Abstract

The problem of reconstructing the spatial support of ambient noise sources from elastic wavefield boundary measure-

ments using cross-correlation techniques is dealt with. It is demystified that the cross-correlation-based standard source

localization functional in elastic media does not provide optimal refocusing due to different pressure and shear wave

speeds. Then, a weighted functional is proposed to rectify the coupling artifacts. A numerical experiment is presented to

substantiate the appositeness of the proposed functional.
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1. Introduction

We consider the problem of reconstructing the spatial
support of ambient noise sources from boundary wave-
field measurements in an isotropic homogeneous elastic
medium in two or three dimensions using cross-correla-
tion techniques (Borcea et al., 2010; Garnier and
Papanicolaou, 2012; Garnier et al., 2013; Hoop
et al., 2013). The main application envisaged for the
present work is so-called passive elastography where
the aim is to identify the muscle noise sources in an
isotropic elastic medium (Gennisson et al., 2003;
Sabra et al., 2007; Archer and Sabra, 2010; Carmona,
2011; Ammari et al., 2014). Another potential applica-
tion is the localization of the Earth’s background noise
source distribution, which contains significant informa-
tion about the regional geology, time-dependent crustal
changes and earthquakes (Asghar et al., 1998; Garnier
and Papanicolaou, 2009; Kader, 2011; Hoop et al.,
2013; Nawaz and Lawrie, 2013). Nayfeh (1995), Chen
et al. (2008), Kuske (2010), Shen et al. (2013), Afzal
et al. (2014) and Nawaz et al. (2014) detail other
potential applications and techniques associated with
the present work.

The problem of ambient noise source localization in
acoustic media (both attenuating and nonattenuating)
has been considered by Ammari et al. (2012) wherein
cross-correlation-based imaging functionals were estab-
lished. In this note, we extend the same approach to
elastic media. We first consider the elastic counterpart
of the source localization functional used by Ammari
et al. (2012). Unfortunately, it mixes the irrotational
and solenoidal components of the source due to

different pressure and shear wave speeds.
Nevertheless, we present a new weighted functional,
based on a Helmholtz decomposition for the Green
function (initially proposed by Ammari et al. (2013)),
taking into account the different wave speeds for pres-
sure and shear waves.

2. Mathematical formulation

Let ��R
d, d¼ 2,3, be an open bounded domain, occu-

pied by a homogeneous isotropic elastic material, with
Lipschitz boundary @�.

Consider the linear elastic wave equation in R
d,

that is

@2u

@t2
ðx, tÞ � Ll,�uðx, tÞ ¼ nðx, tÞ, t 2 R,

uðx, tÞ ¼
@u

@t
ðx, tÞ ¼ 0, x 2 R

d, t� 0

8><>: ð1Þ

for all x2R
d where

Ll,�u ¼ ��uþ ðlþ �Þrðr � uÞ ð2Þ
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Here (l, �) are the Lamé coefficients of � and its dens-
ity is assumed to be constant and is taken as one with-
out loss of generality. The term n(x, t) models a
distribution of noise sources that is compactly sup-
ported in domain �. Furthermore, we assume that
n(x, t) is a stationary (in time) Gaussian process with
the mean zero and covariance function

nðx, tÞnyðy, sÞ
� �

¼ Fðt� sÞKðxÞ�ðx� yÞ ð3Þ

where d is the Dirac mass at the origin, the brackets
stand for statistical average, y indicates a transpose
operation and F is the time covariance of noise signals
(its Fourier transform is the power spectral density).
The quantity of interest K is a symmetric matrix, that
characterizes the spatial support of the sources. We aim
to identify K using the data setn

uðx, tÞ, 8t 2 ½0,T�, x 2 @�
o

for sufficiently large T.
Let bG be the fundamental solution, subject to the

outgoing Sommerfeld–Kupradze radiation condition,
to the time-harmonic elastic wave equation

ðLl,� þ !
2ÞbGðx, y,!Þ ¼ ��ðx� yÞI in R

d

We recall, for instance from Aki and Richards (1980)
and Ammari (2008), that bGðx, y,!Þ can be expressed in
the form

bGðx, y,!Þ ¼ 1

��2s
�2s g

sðx, y,!ÞIþD gs � gpð Þðx, y,!Þ
� �

ð4Þ

for all x,y2R
d such that x 6¼ y, where

I ¼ �ij
� �d

i,j¼1
, D ¼ @xi@xj

� �d
i,j¼1

and

�2s ¼
!2

�
¼
!2

c2s
�2p ¼

!2

lþ 2�
¼
!2

c2p

Here, ga(x,y,!) is the outgoing fundamental solution to
the Helmholtz operator �ð�þ �2�Þ in R

d with a¼ p,s.
We observe the waves at surface @� over the time

interval [0,T] and compute the empirical cross-
correlation

CTðx, y, �Þ ¼
1

T

Z T

0

uðx, tÞuyðy, tþ �Þ dt ð5Þ

for all x,y2 @�. If the recording time window is long
enough then the empirical cross-correlation is equiva-
lent to the statistical cross-correlation (Garnier and
Papanicolaou, 2009)

Cðx, y, �Þ ¼ 5 uðx, tÞuyðy, tþ �Þ4

¼
1

2�

Z
R

Z
�

bGðx, z,!ÞKðzÞbGyðy, z,!Þ
bFð!Þe�i!� dz d! ð6Þ

where C contains all the information about the data.
Indeed the data set has a stationary Gaussian distribu-
tion with mean zero, so that its statistical distribution is
fully characterized by the cross-correlation (Garnier
and Papanicolaou, 2009; Carmona, 2011). Here the
superposed bar indicates complex conjugation.

3. Helmholtz decomposition
of fundamental solution

In the sequel, we decompose fundamental solution bG
into the sum of an irrotational field bGp and a solenoidal
field bGs. We will need the following Hilbert spaces

H1ð�Þ ¼
n
v 2 L2ð�Þ : rv 2 L2ð�Þ

o
,

Hcurlð�Þ ¼
n
v 2 L2ð�Þd : r � v 2 L2ð�Þd

o
,

Hdivð�Þ ¼
n
v 2 L2ð�Þd : r � v 2 L2ð�Þ

o
equipped with the norms

kvkH1ð�Þ : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
�

�
jvj2 þ jrvj2

�
dx

s
,

kvkHcurlð�Þ : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
�

�
jvj2 þ jr � vj2

�s
dx,

kvkHdivð�Þ : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
�

�
jvj2 þ jr � vj2

�
dx

s
Assume that � is simply connected, homogeneous

and isotropic with the connected boundary @�. Then
Helmholtz decomposition states that for v2L2(�)d,
there exist �v2H

1(�) and  v2Hcurl(�)\Hdiv(�)
such that

v ¼ r�v þ r �  v ð7Þ

where �v solves the weak Neumann problemZ
�

r�v � rp dx ¼

Z
�

v � rp dx, 8p 2 H1ð�Þ ð8Þ

and is unique up to an additive constant. In order to fix
the constant and to uniquely determine the
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corresponding  v, we enforce the following properties
(Borchers and Sohr, 1990; Galdi, 1994)

r �  v ¼ 0 in �,
 v � 	 ¼ ðr �  vÞ � 	 on @�

	
ð9Þ

where 	 is the outward unit normal to @�. The bound-
ary condition

ðr �  vÞ � 	 ¼ 0 on @�

shows that the divergence-free and rotation-free
parts in equation (7) are orthogonal. We define,
respectively, the decomposition operators Hp and Hs

for v2L2(�)d by

Hp½v� :¼ r�v and Hs½v� :¼ r � v

where �v is a solution to equation (8) and  v satisfies

r �  v ¼ v� r�v

together with equation (9). The L2
�projectors Hp and

H
s are pseudo-differential operators with kernels

pp(x,
) equal to the orthogonal projector onto R
 and
ps¼ I� pp respectively; see, for instance, Schwarz,
(1995). Therefore, bG can be decomposed as

bG ¼ bGp
þ bGs

ð10Þ

with

bGp
¼ Hp½bG� and bGs

¼ Hs½bG� ð11Þ

where H�½bG� signifies that
H�½bG�q ¼ H�½bGq�, 8q 2 R

d, � ¼ p, s ð12Þ

Finally, we define the weighted fundamental solutionsb! by

b!ðx, y,!Þ ¼ csbGs
ðx, y,!Þ þ cpbGp

ðx, y,!Þ ð13Þ

4. Source localization

We aim to identify the source matrix K. The idea is to
back-propagate the cross-correlation of the data, which
contains all the accessible information about the source
distribution. Consider the source localization func-
tional, which is an elastic counterpart of the one pro-
posed by Ammari et al. (2012), given by

IðzSÞ ¼ 2�

Z Z Z Z
@��@��R

þ�R
þ

G
y
ðx, zS, tÞ

Cðx, y, s� tÞGðy, zS, sÞ dt ds d�ðxÞ d�ðyÞ

¼

Z Z Z
R�@��@�

bGyðx, zS,!Þ
bCðx, y,!ÞbGðy, zS,!Þ d�ðxÞ d�ðyÞ d! ð14Þ

for the search point zS2�. Here bC is the Fourier trans-
form of C defined by equation (6) and ds is the surface
element on @�. The following elastic identities, from
Ammari et al. (2013), play a vital role in further
discussion.

Lemma 1. (Helmholtz–Kirchhoff identities). In a homo-
geneous isotropic elastic medium, we have for all x, z2�
sufficiently far from @� (with respect to wavelength)

<e

Z
@�

bGs
ðx, y,!ÞbGp

ðy, z,!Þ d�ðyÞ

	 

’ 0, ð15Þ

<e

Z
@�

bG�
ðx, y,!ÞbG�

ðy, z,!Þ d�ðyÞ

	 

’

1

!c�
=m

�bG�
ðx, z,!Þ

�
ð16Þ

where a¼ p, s, cs ¼
ffiffiffiffi
�
p

and cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2�
p

are shear and
pressure wave speeds.

As a consequence, we have the following result.

Proposition 2. The imaging functional I (zS), defined by
equation (14), mixes the components of the support
matrix K. Precisely

IðzSÞ ’

Z
�

QðzS, zÞKðzÞ dz ð17Þ

with the kernel Q defined by

QðzS, zÞ :¼

Z
R

bFð!Þ
!2 

cs þ cp

2cscp
=m

�bGðzS, z,!Þ�þ cs � cp

2cscp
BðzS, z,!Þ

!2

d!

ð18Þ

where the matrix B, given by

Bðx, y,!Þ ¼ =m
�
ðbGp
� bGs
Þ
�
ðx, y,!Þ

is nondiagonal and characterizes the error whenever
cs 6¼ cp.

Thus, the elastic counterpart I (zS) of the acoustic
imaging functional (Ammari et al., 2012) does not pro-
vide the ideal source localization in elastic media.
Indeed, the measured field at the surface @� has non-
linearly coupled pressure and shear wave components.
Consequently, the back-propagation of these signals
introduces the interference of the components of K(x)
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Figure 1. Comparison between I and eI in an elastic medium. The Lamé parameters are (l,�)¼ (10,1). Left: pressure component

H
p[K], right: shear component Hs[K]. Top to bottom: initial source n; reconstruction of I and eI .
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because of different wave speeds. Unfortunately, the
components of the boundary measurements cannot be
uncoupled using Helmholtz decomposition without
extrapolating the measurements into a neighborhood
of @�, which is neither practical nor apt. To take
into account the wave speed discrepancy in back-pro-
pagation, we define a modified weighted imaging
functional

eIðzSÞ : ¼ Z Z Z
R�@��@�

b!yðx, zS,!ÞbCðx, y,!Þb!ðy, zS,!Þ
d�ðxÞ d�ðyÞ d! ð19Þ

where b! is defined in equation (13).
As an immediate consequence of Lemma 1, the fol-

lowing result holds.

Theorem 3. The imaging functional eI , defined by equa-
tion (19), gives the support function K up to a smoothing
operator eQ, that is

eIðzSÞ ’ Z
�

eQðzS, zÞKðzÞ dz ð20Þ

with

eQðzS, zÞ ¼ Z
R

bFð!Þ
!2
=m

�bGðzS, z,!Þ�2 d! ð21Þ

In view of Theorem 3, the resolution of the imaging
functional eI is determined by the kernel eQðzS, zÞ. The
high-frequency components are penalized in this func-
tional because of the factor !�2 and therefore, the reso-
lution is still limited. In order to achieve better
resolution, one can further modify the imaging func-
tional to make its smoothing kernel as close as possible
to a Dirac distribution d (zS� z) thereby enhancing the
high frequencies. However, one should be aware that
enhancing the high-frequency components may cause
instability in the imaging procedure. To this end, an
imaging functional where the weights are chosen in
terms of the power spectral density of the noise
source can be established using analogous, but more
involved, arguments, as in Ammari et al. (2012).

We present a numerical experiment to illustrate the
performance of the two imaging functionals in Figure
1. The irrotational and solenoidal components of the
source matrix are plotted along with their reconstruc-
tions using I and eI . The side-lobes indicating the cou-
pling of the shear and pressure components of the
source matrix are apparent in the reconstructed
images obtained using I . On the other hand, eI clearly
produces very small side-lobes around the source loca-
tion compared to I , substantiating the appositeness of
the proposed imaging functional.

5. Conclusion

In this note, we have discussed two imaging functions
for reconstructing ambient noise sources in an elastic
medium using cross-correlations. We substantiated that
the standard source localization functional couples the
shear and pressure components of the source and pro-
vides an imaging functional based on weighted
Helmholtz decomposition to counter these coupling
artifacts. The weighed imaging functions, with weights
depending on power spectral density, will be presented
in a forthcoming work. The cases of inhomogeneous
media and spatially correlated sources will also be
taken into account.
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