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Abstract

In this paper, the propagation and scattering of acoustic waves in a flexible wave-guide involving step discontinuity at an
interface is considered. The emerging boundary value problem is non-Sturm-Liouville and is solved by employing a hybrid
mode-matching technique. The physical scattering process and attenuation of duct modes versus frequency regime and
change of height is studied. Moreover, the mode-matching solution is validated through a series of numerical experiments
by testifying the power conservation identity and matching interface conditions.
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Introduction

The noise control problem is a subject of technological and

scientific concern in the modern industrialized society. Frequent

sources of unwanted noise such as vehicle, aero-engines and

heating, ventilation, and air conditioning (HVAC) systems

contribute a lot in environmental nuisance. In particular the

noise is generated by the mechanical devices like combustion

engine or fans etc. which propagates through the networks of ducts

to the outside world.

In order to minimize the transmission of such unwanted noise

the sound absorbent materials, acoustic lining or silencers and

novel geometrical designs are significantly used [1–13]. The

principle objective of this article is to analyze the reflection and

transmission of fluid-structure coupled waves in a wave-guide

consisting of elastic plate and membrane bounded ducts separated

by a vertical rigid strip. Precisely, we aim to establish and analyze

scattered field at the planar junction by means of the conditions of

continuity for pressure and normal velocity when the elastic plate

edges are clamped or pin-jointed to the vertical strip.

The solution to the analogous problems with continuous

geometry are usually tractable by means of Wiener-Hopf

techniques. However, the envisaged model problem involves

discontinuity in geometry at the junction of two wave bearing

ducts, thereby impeding the use of a classical Wiener-Hopf

technique which is inappropriate for the problems involving the

discontinuity in geometry or a material property [14,15].

Nonetheless, hybrid mode-matching techniques with suitable

orthogonality relation (OR) not only render a solution of the

problem but also provide the physical insight of the underlying

phenomena.

Initially mode-matching technique was introduced to solve the

canonical problems associated with the Laplace or Helmholtz

operators with imposed Dirichlet, Neumann or impedance type

boundary conditions. Classically, the underlying eigen-systems are

Sturm-Liouville (SL) and standard orthogonality relations lead to

the solution of the problem. However, for the problems involving

second or higher order boundary conditions the eigen-system

becomes Non-SL and appearing modes do not satisfy the

orthogonality conditions. Lawrie and Abrahams [16] developed

a new form of orthogonality relations for Non-SL systems and later

on Lawrie [17] stated some analytic properties of the orthogonality

relations for convergence of the system. The comprehensive

historic prospects of such relations have been comprehensively

accounted for example in [18] and reference cited therein. The

corresponding eigen-values are the roots of the dispersion relations

and can be found numerically. Since then similar type of

orthogonality relations have been exploited in literature to deal

with assorted physical situations, see for instance [19–22].

In this investigation, two incident duct modes, namely structure-

borne and fluid-borne modes, are considered in an elastic plate

bounded duct. The boundary value problem is reformulated in a

non-dimensional form with respect to length 1=k and time 1=v,

where k represents the wave-number. At matching interface, the

incident modes scatter into the model spectrum of reflected and

transmitted modes. The standard procedure of separation of

variables is then used to express the reflected and transmitted

potentials in an eigen-expansion form. Since the boundary

conditions involve higher order derivatives, the eigen-system of

the duct region is non-Sturm-Liouville. The generalized orthog-

onality relation such as those used in [14,15] enables the

continuity conditions of pressure and the normal velocity to recast

the problem in the infinite system of linear algebraic equations,

which are truncated and solved simultaneously. The truncation of

higher order modes and the use of appropriate edge conditions

finally lead to the solution of the scattering problem. The clamped

and pin-jointed edge conditions are invoked at the junctions of

elastic plate and membrane with the vertical strips.

PLOS ONE | www.plosone.org 1 August 2014 | Volume 9 | Issue 8 | e103807

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0103807&domain=pdf


In numerical section, we have debated the power distribution

for elastic plate and membrane bounded ducts for both the

fundamental and secondary mode incidents. Whereas Warren et

al. [14] discussed the same for rigid and membrane bounded ducts

only for the case of fundamental mode. They opted to validate the

mode-matching solution with the Wiener-Hopf solution for planar

structures. But in this analysis we have validated the results by

plotting the continuity conditions at matching interface as well as

achieved the conserve power identity. Such an approach of

validating the results can be seen in [3] while the results for both

the fundamental and secondary mode incidents were also

formulated and employed in [15]. It is worthwhile declaring that

the results for different wall conditions cannot appear as a general

or special form of each other. However a consistency in the

behavior of power distribution is observed throughout.

The rest of the investigation is arranged in the following order.

The next section is dedicated to formulate the boundary value

problem governing the wave propagation in the wave-guide. A

mode-matching solution is constructed in the subsequent section.

The edge conditions and their implications on the scattering

pattern are then discussed. Graphical results are presented to

discuss the distribution of power against frequency and vertical

discontinuity. Finally, the important contributions of the investi-

gation are summarized.

Mathematical Formulation

Consider a two dimensional infinite wave-guide consisting of

two semi infinite duct sections with different heights. The lower

wall of both duct sections is assumed to be acoustically rigid. The

upper surface of inlet duct section consists of an elastic plate

whereas that of the outlet duct section is a membrane. The upper

surfaces of the inlet and outlet duct sections are connected by

means of a vertical rigid strip and respectively meet the strip at

heights �aa and �bb where �bbw�aa. In a two-dimensional Cartesian frame

of reference (�xx, �yy) the duct sections occupy the regions

({?,0)|(0, �aa) and (0,?)|(0, �bb),

respectively. The waveguide is filled with compressible fluid of

density r and sound speed c.

Throughout this work, a harmonic time dependence e{iv�tt is

assumed and suppressed where v is the angular frequency in

radians. The problem is non-dimensionalized relative to length

and time scales 1=k and 1=v respectively by virtue of the

transformation x ~ k�xx and y ~ k�yy etc. The non-dimensional

geometry of the problem is depicted in Figure 1.

Let w1(x, y) and w2(x, y) be the potential fields in the inlet and

outlet duct sections respectively. The non-dimensional velocity

potential w(x, y) in the wave-guide can be defined as

w(x, y) ~
w1(x, y), V(x, y) [ ({?,0)|(0, a),

w2(x, y), V(x, y) [ (0,z?)|(0, b),

�
ð1Þ

which satisfies the Helmholtz equation

+2z1
� �

w ~ 0, V(x, y) [ ({?, 0)|(0, a) | (0,z?)|(0, b): ð2Þ

The natural conditions in non-dimensional form at lower

acoustically rigid wall for both duct regions are

Lwj

Ly
~ 0, x [ , y ~ 0, j ~ 1, 2: ð3Þ

Since the upper surface of the inlet duct section comprises of an

elastic plate, the boundary condition at surface ({?,0)|fag in

non-dimensional form is given by

L4

Lx4
{m4

1

 !
w1y{a1w1 ~ 0, ð4Þ

where subscript y indicates a derivative with respect to y, m1 is the

non-dimensional in vacuo plate wave-number and a1 is a fluid

loading parameter defined by

m4
1 ~

12(1{u2)c2rp

k2h2E
and a1 ~

12(1{u2)c2ra

k3h3E
: ð5Þ

Here E is the Young’s modulus, rp is the density of the plate, ra is

the density of the compressible fluid and u is the Poisson’s ratio.

On the other hand, since the upper surface of outlet duct section

is assumed to be a membrane, following non-dimensional

membrane boundary condition is imposed

L2

Lx2
zm2

2

 !
w2yza2w2 ~ 0, (x, y) [ (0,z?)|fbg, ð6Þ

where m2 and a2 are respectively non-dimensional membrane

wave-number and fluid loading parameter defined by

m2 ~
c

cm

and a2 ~
v2r

Tk3
: ð7Þ

In Equations (7) above, T denotes the membrane tension per unit

length (in the normal direction) and cm ~

ffiffiffiffiffiffi
T

rm

r
denotes the speed

of waves in vacuo on the membrane where rm is the membrane

mass per unit area.

At the matching interface, f0g|½0, a� (coined as aperture), the

fluid pressure and the normal component of velocity are

continuous whereas the normal component of velocity vanishes

on x ~ 0z, y [ ½a, b�. Therefore, the following continuity

conditions hold:

w1 ~ w2, (x, y) [ f0g|½0, a� ð8Þ

and

Lw2

Lx
~

Lw1

Lx
, (x, y) [ f0g|½0, a�

0, (x, y) [ f0g|½a, b�:

8<
: ð9Þ
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In addition, the edge conditions are applied at the points where

elastic plate and membrane are joined with rigid vertical strip.

These conditions not only ensure a unique solution of the

boundary value problem but also describe how the elastic plate or

membrane are connected to the strip. The choice of edge

conditions can significantly alter the scattered field. The zero

displacement (resp. zero gradient) condition at membrane edge is

w2y(0, b) ~ 0 (resp: w2xy(0, b) ~ 0): ð10Þ

The above mentioned class of boundary value problems having

wave-bearing boundaries has been discussed in detail by many

researchers, see for instance [1,3,5,14,15]. The boundary condi-

tions involve only even order derivatives in x since odd order

derivatives do occur in systems which are damped, and the

occurrence of such derivatives significantly alters the nature of the

underlying eigen-system. In particular, the dispersion relation will

not be an even function of the wave number. It is not, therefore,

immediately obvious that the results presented herein apply to

such systems. Note also, that higher order derivatives in y are

easily removed by recourse to the governing wave equation. The

underlying structure with its mathematical model is quite

significant and physically admissible [2,4,23]. The solution to the

above stated problem is presented in the next section.

Mode-Matching Solution

Let an incident wave of an arbitrary duct mode be propagating

in inlet duct section from the negative x{direction towards

x ~ 0. At the planar junction of ducts or discontinuity, that is, at

x ~ 0, it will scatter into potentially large number of reflected and

transmitted modes. The eigen-expansion form of scattered velocity

potentials in duct regions take the forms

w1(x, y) ~ F‘Y
1
‘ (y) exp (ig‘x)z

X?
n ~ 0

AnY 1
n (y) exp ({ignx), ð11Þ

and

w2(x, y) ~
X?

n ~ 0

BnY 2
n (y) exp (isnx), ð12Þ

where

Y 1
n (y) ~ cosh (tny) and Y 2

n (y) ~ cosh (cny):

The first term in equation (11) represents the incident wave with

an arbitrary forcing F‘ ~

ffiffiffiffiffiffiffiffiffiffi
a1

C‘g‘

r
so that the incident power is

unity. The counter ‘ assumes values 0 or 1 according to

fundamental or secondary mode incidence respectively. The

parameters gn ~
ffiffiffiffiffiffiffiffiffiffiffiffi
t2

nz1
p

and sn ~
ffiffiffiffiffiffiffiffiffiffiffiffi
c2

nz1
p

are the complex

wavenumbers of nth reflected and transmitted modes respectively,

where tn and cn for n ~ 0, 1, 2, � � � are the eigen-values of the

eigen-system. The eigen-values tn and cn are the roots of the

dispersion relations

K1(tn,a)~ (t2
nz1)2{m4

1

� �
tn sinh ( tna)

{a1tn cosh (tna)~0,
ð13Þ

Figure 1. Non-dimensional geometry of wave-guide.
doi:10.1371/journal.pone.0103807.g001
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and

K2(cn, b) ~ c2
nz1{m2

2

� �
cn sinh (cnb){a2cn cosh (cnb) ~ 0: ð14Þ

The dispersion relations (13)–(14) can be solved numerically for tn

and cn which, in turn, satisfy the following properties.

a. For each root tn or cn, there is another root {tn or {cn.

b. There is a finite number of real roots.

c. There is an infinite number of imaginary roots.

d. The complex roots +tc or +cc and their complex conjugates

+t�c or +c�c occur for some frequency ranges.

The real and imaginary roots are taken by employing a

convention that the positive roots, zcn, are either positive real or

have positive imaginary part. They are sorted sequentially by

placing real root first and then by increasing imaginary part, so

that c0 is the largest real root. For any complex root cc lying in the

upper half of the complex c{plane, the root {c�c also lies in same

half plane. The sequence of such pairs is taken according to the

magnitude of their imaginary part, and in the order cc is followed

by {c�c . Furthermore, it is assumed that all roots have multiplicity

one.

The above proposed eigen-system is non-SL system [16] and

the eigen-functions Y 1
n (y) and Y 2

n (y) are linearly dependent [17]

however satisfy the special OR. The use of ordinary orthogonality

relations (ORs) is inappropriate in this case. Following the

procedure devised in [14] the appropriate ORs for given eigen-

system are found to be

a1

ða
0

Y 1
m(y)Y 1

n (y)dy ~ dmnCn{(t2
mzt2

nz2)Y 1
m’(a)Y 1

n ’(a), ð15Þ

and

a2

ðb
0

Y 2
m(y)Y 2

n (y)dy ~ dmnDn{Y 2
m’(b)Y 2

n ’(b): ð16Þ

Note that dmn is the Kronecker’s delta function and the prime

indicates a differentiation with respect to y whereas

Cm ~
a1a

2
z

a1Y 1
m(a)Y ’1n(a)

2t2
m

z2(t2
mz1)½Y 1

m’(a)�2, ð17Þ

and

Dm ~
a2b

2
z

3c2
mz1{m2

2

2c2
m

� 	
½Y 1

m’(b)�2: ð18Þ

The complex amplitudes of nth reflected and transmitted modes,

An and Bn, are the unknowns to be determined. The substitution

of model expansion of scattered fields (11–12) into the continuity

conditions (8–9) lead to an infinite system of algebraic equations

thereby providing the values of An and Bn. The resultant algebraic

system can be solved by neglecting higher order modes

corresponding to nwN for some N [ N. Using (11–12) into (8),

the continuity condition of pressure yields

F‘ cosh (t‘y)z
X?

n ~ 0

An cosh (tmy) ~
X?

n ~ 0

Bn cosh (cny) ð19Þ

Finally, multiplying (19) with a1 cosh (tmy), integrating over (0, a)
and subsequently exploiting OR (15) it is found that

Am ~ {F‘dm‘z
tm sinh (tma)

Cm

E1z(t2
mz2)E2

� �

z
a1

Cm

X?
n ~ 0

BnRmn,

ð20Þ

where

E1 ~ w1yyy(0, a) and E2 ~ w1y(0, a), ð21Þ

and

Rmn ~

ða

0

cosh (tmy) cosh (cny)dy: ð22Þ

Similarly by invoking (11–12) into (9), multiplying with

a2 cosh (cmy), integrating from (0, b) and exploiting OR (16) the

expression for Bm is found to be

Bm ~
cm sinh (cmb)E3

Dmsm

z
a2

Dmsm

fF‘g‘R‘m{
X?

n ~ 0

AngnRnmg, ð23Þ

where

E3 ~ {iw2xy(0, b): ð24Þ

In Equations (21) and (24), the constants Ei (i ~ 1, 2, 3) are to be

precised to ensure the uniqueness of the scattering pattern and the

mode-matching solution. This requires appropriate conditions at

the points connecting elastic plate and membrane with vertical

strip. The subsequent section is dedicated to invoke different edge

conditions thereby fixing the values of these constants.

Edge Conditions

A common assumption, when modeling wave-guide structures,

is that the duct walls are clamped at the joint. In practice,

however, the duct sections may be simply supported together.

Therefore this section investigates different effects that arise when

the edges are (a) clamped and (b) pin-jointed at the junction. The

former edge conditions are characterized by zero membrane

displacement and zero gradient while the latter by zero plate

displacement and zero plate bending moment. A comprehensive

list of appropriate edge conditions can be found, for example, in

references [5,24,25]. As proved by Lawrie [17], for structures

involving elastic plates or membranes, the number of edge

conditions are half of the order of plate/membrane conditions.

In fact, this imposes additional constraints on the solution to the

Acoustic Scattering in Flexible Waveguide
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underlying boundary value problem which also ensures the

uniqueness of the solution. In the sequel, two different admissible

conditions, precisely clamped edge and pin-jointed edge condi-

tions, are considered in order to cater various industrial

applications.

Clamped edge condition
In this case the elastic plate is connected along vertical rigid strip

edge in the clamped connection. The appropriate edge conditions

correspond to be the zero displacement and zero gradient. That is

w1y(0, a) ~ 0, ð25Þ

and

w1xy(0, a) ~ 0: ð26Þ

On multiplying (20) with
P?

m ~ 0

gmtm sinh (tma) and using edge

condition (26), it is found that

E1 ~
2F‘g‘t‘ sinh (t‘a)

S1
{

a1

S1

X?
n ~ 0

X?
m ~ 0

Bngmtm sinh (tma)Rmn

Cm

, ð27Þ

where S1 ~
P?

m ~ 0

gmt2
m sinh2 (tma)

Cm
: From (21) and (25), it is obvious

to find E2 ~ 0: On using the zero displacement edge condition,

(10) results

E3 ~ {
a2F‘g‘

S2

X?
m ~ 0

cm sinh (cmb)R‘m

Dmsm

z
a2

S2

X?
n ~ 0

X?
m ~ 0

Angncm sinh (cmb)Rnm

Dmsm

,

ð28Þ

where S2 ~
P?

m ~ 0

c2
m sinh2 (cmb)

smDm

:

Pin-Jointed edge condition
For the case in which the plate is pin-jointed (simply supported)

along the edge x ~ 0, y ~ a. The appropriate edge conditions

are

w1y(0, a) ~ 0 and w1xxy(0, a) ~ 0: ð29Þ

On imposing (29) in a similar fashion as for clamped edge

condition, it is found that E2 ~ 0 and

E1 ~ {
a1

S1

X?
n ~ 0

X?
m ~ 0

Bngmtm sinh (tma)Rmn

Cm

, ð30Þ

where S2 ~
P?

m ~ 0

g2
mt2

m sinh2 (tma)

Cm

: Moreover the zero gradient

w2xy(0, b) ~ 0, ð31Þ

is considered at membrane edge yielding E3 ~ 0.

Numerical Results and Discussion

For the given non-SL system, (20) and (23) constitute a system of

infinite number of linear algebraic equations which, together with

the different values of Ei (i ~ 1, 2, 3) for either clamped edge or

pin-jointed edge situations, is truncated and solved numerically.

The numerical solution converges point-wise to the desired

solution. The truncation of (20) and (23) at N corresponds to

Nz1 equations, where N is the number of truncated modes.

In order to discuss wave propagation in similar structures as

considered herein often requires the study of the power balance.

There are two admissible means of energy propagation: through

the fluid and along the flexible boundary. The convenient

expressions for the (non-dimensional) energy flux across an

arbitrary vertical strip in a duct bounded above by an elastic

plate and membrane, and below by a rigid wall are given by

Pref zPtran ~ <
XN

n ~ 0

1

a1

DAnD2 gnCnz
1

a2

DBnD2 snDn

� 	( )
~ 1, ð32Þ

where

Pref :~ < 1

a1

XN

n ~ 0

DAnD2 gnCn

( )
, xv0, ð33Þ

gives the reflected power in inlet duct and

Ptran :~ < 1

a2

XN

n ~ 0

DBnD2 snDn

( )
, xw0 ð34Þ

shows the transmitted power to outlet duct. The power expressions

(32) to (34) can be found in [18] which were also utilized by

Warren et al. [14] for a membrane bounded duct. These

expressions incorporate both the fluid and the structure-borne

components of energy flux and can also be derived using the

approach taken by Carighton and Oswell [26] together with the

appropriate OR.

The dynamic interaction between a fluid and a structure is a

major apprehension in many engineering problems. These

problems include systems as diverse as offshore and submerged

structures, storage tanks, bio-mechanical systems, ink-jet printers,

aircrafts, and suspension bridges. The interaction can extremely

change the dynamic properties of the structure. Therefore, it is

desired to accurately model these diverse systems with the

inclusion of the fluid-structure interaction. In order to see the

fluid structure interaction, the fluid and structural equations need

to be represented as energy equations for reflected and transmitted

modes. This analysis presents a treatment of the interaction of an

acoustic fluid with a flexible structures. The numerical results

presented in this section consist of comparison between reflected

and transmitted components of power against frequency and

change of height, for both the structural-borne fundamental and

the fluid-borne second mode incidence, and to validate the mode-

matching technique, conditions are verified for the real and

imaginary parts of pressure and velocity at the interface x ~ 0.

Acoustic Scattering in Flexible Waveguide
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In the sequel we assume that the inlet duct contains elastic plate

of aluminum with thickness h ~ 0:0006m and density

rp ~ 2700kgm{3. The values of Poisson’s ratio and Young’s

modulus are taken to be E ~ 7:2|1010Nm{2 and n ~ 0:34

respectively; while ra ~ 1:2kgm{3 and c ~ 344ms{1. The

outlet duct comprises membrane of mass density

rm ~ 0:1715kgm{2 and tension T ~ 350Nm.

Figures 2–7 are delineated for two different field incidences,

that is, the fundamental mode incidence and secondary mode

incidence. The results show that for the fundamental mode

incidence (‘ ~ 0) maximum of energy (in excess of 99% of energy)

is carried in the plate whereas for secondary mode incident (‘ ~ 1)

in excess of 99% of energy is in the fluid.

Power distribution versus height of outlet duct
In Figures 2–3, the power components are plotted versus kb

(the non-dimensional height) by fixing physical height of inlet duct

at �aa ~ 0:04m and varying the height of outlet duct from

�aa ~ 0:04m to b ~ 4m.

Fundamental mode incidence. It is observed that for the

case of fundamental mode incidence (‘ ~ 0), when �aa ~ �bb the

maximum power goes on reflection for both clamped and pin-

jointed conditions, where f :~ v=2p ~ 250Hz: The overall

Figure 2. Power balance versus non-dimensional height for fundamental mode incidence. Left: Clamped edge conditions, Right: Pin-
jointed edge conditions.
doi:10.1371/journal.pone.0103807.g002

Figure 3. Power balance versus non-dimensional height for secondary mode incidence. Left: Clamped edge conditions, Right: Pin-jointed
edge conditions.
doi:10.1371/journal.pone.0103807.g003
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trend on increasing outlet duct height is reflection over periodic

fluctuation at the point where every new mode becomes

propagating. It is worth mentioning that we have used rigid and

the flexible walls of different conditions in the configuration of inlet

and outlet ducts. Therefore the inlet duct modes and outlet duct

modes are coupled due to flexible walls. For the fundamental

mode incidence the maximum of the incident power goes on

reflection which is consistent with available results; see for example

Warren et al. [14] for rigid inlet and flexible outlet duct walls. Note

that Pref , Ptrans and PB represent the reflected power, transmitted

power and their sum (Power Balance) respectively.

Secondary mode incidence. Unlike fundamental mode

incidence, when the secondary mode is incident (‘ ~ 1), at

�aa ~ b the 20% of incident power is transmitted whereas the other

goes on reflection. On varying the physical height b of the outlet

duct section, the transmission reaches upto 70% of incident power

at the point where a new mode is cut-on. But once a new mode

becomes propagating, reflection increases upto 80% and trans-

mission decreases inversely. The overall trend is that the reflection

and transmission behave inversely for both clamped and pin-

jointed edges.

Figure 4. Power balance versus frequency for fundamental mode incidence. Left: Clamped edge conditions, Right: Pin-jointed edge
conditions.
doi:10.1371/journal.pone.0103807.g004

Figure 5. Power balance versus frequency for secondary mode incidence. Left: Clamped edge conditions, Right: Pin-jointed edge
conditions.
doi:10.1371/journal.pone.0103807.g005
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Power distribution versus frequency
Figures 4–5 depict the distribution of power in elastic plate and

membrane bounded ducts against frequency values. The physical

height of inlet duct is fixed at a ~ 0:04m while the outlet duct

achieves height b ~ 0:06m:
Fundamental mode incidence. It can be seen that for the

case of fundamental mode incidence (‘ ~ 0), the maximum power

goes on reflection for both clamped and pin-jointed edge

conditions. However relatively more reflection for later edge

condition along with zero gradient condition at membrane edge is

observed. But the power balance identity (32) is achieved

successfully in whole frequency regime for both edge conditions.
Secondary mode incidence. Figure 5 elucidates the power

balance versus frequency in the case of secondary mode incidence

(‘ ~ 1).

The graph on the left in Figure 5 is obtained by choosing the

clamped edge condition at elastic plate edge (�xx ~ 0,

�yy ~ �aa ~ 0:04m) and zero displacement condition at membrane

edge (�xx ~ 0, �yy ~ b ~ 0:06m), and finally plotting power

components verses frequency. It can be seen that in the frequency

range 1*234Hz the power balance identity (32) is not achieved

(dotted line) due to the cut-off inlet duct mode. At frequency

f ~ 235Hz, the inlet duct mode becomes propagating and the

90% of the incident power goes on reflection which decreases

steadily by increasing frequency. However at f ~ 553Hz the

reflected and transmitted power is distributed equally in duct

regions. It is the point where the membrane bounded duct mode

(outlet duct mode) becomes propagating. Once outlet duct mode is

cut-on the maximum power goes on transmission whereas

reflection is very small.

On the other hand, the graph on the right in Figure 5 is

obtained by assuming the pin-jointed condition at elastic plate

edge and zero gradient condition at membrane edge. The graph

shows that as inlet duct mode is cut-on at f ~ 235Hz, the entire

incident power is reflected and consequently there is no

transmission. However, once outlet duct mode is cut-on

(f ~ 553Hz) it suddenly decreases and maximum of incident

power goes on transmission.

Validation of the technique
Figures 6–7 show the continuity of pressure (8) and normal

velocity (9) at the matching interface for a ~ 0:55 and b ~ 0:82,
the non-dimensional heights of inlet and outlet ducts respectively.

It is clearly substantiated in Figure 6 that at matching interface,

that is, 0ƒyƒa, the real parts of non-dimensional pressures

<fw1(0, y)g and <fw2(0, y)g show a good agreement (see left

graph in Figure 6), where f ~ 700Hz. The imaginary parts

behave similarly (see right graph in Figure 6).

In Figure 7, the real and imaginary parts of normal velocities

w1x(0, y) and w2x(0, y) are plotted which also elucidate a very

close agreement when 0ƒyƒa.

Figure 6. The continuity of pressure at the matching interface for a~0:55 and b~0:82. Left: Real part, Right: Imaginary part.
doi:10.1371/journal.pone.0103807.g006

Figure 7. The continuity of normal velocity at hte matching interface for a~0:55 and b~0:82. Left: Real part, Right: Imaginary part.
doi:10.1371/journal.pone.0103807.g007
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In contrast to above discussion, the power distribution for only

fundamental mode/plane wave incidence for membrane/rigid

bounded duct can be seen in [14]. However the current study

focuses on the elastic plate bounded inlet duct with two different

incidence modes that are, fundamental mode incidence and

secondary mode incidence. Though the wall conditions and the

physical edge conditions are generally different yet the power

distribution behavior for the fundamental mode incidence is

consistent with Warren et al. [14]. Whereas for secondary mode

incidence the power distribution behavior is consistent with the

results presented in [15]. Therefore along with the validation of

matching conditions the underlying eigen-system is consistent with

that of previous studies [3,14,15].

Conspectus
By virtue of the aforementioned numerical results and

discussion we have the following pronouncements.

a. The numerical agreement of continuity conditions (8–9) at

matching interface and validation of power balance identity (32)

substantiate the validity of the mode-matching solution.

b. It is important to note that for the fundamental mode

incidence the pin-jointed edges minimize the power transmission

as compared to the clamped edges. However for secondary mode

incidence, it increases the rates of power distribution in duct

sections.

c. It is worth commenting that the choice of edge condition does

not affect the attenuation of flexible duct modes. In fact, the choice

of edge conditions imposed on the flexible boundaries at the

junction significantly affects the transmission of energy along the

duct. However, it does not affect the attenuation of flexible duct

modes as can be visualized in Figures 2–7, wherein the attenuation

is consistent for any selection of edge conditions.

Conclusions

An analytic solution to scattering problem of a plane acoustic

wave propagating in a rectangular waveguide involving a step

discontinuity is presented. It is a well-studied phenomenon

[1,3,4,26] that a membrane or elastic plate attached with the

mouth of an expansion chamber can effectively reduce the

transmission of low-frequency noise in ducting system. The

investigation was carried out to get a structure with a view to its

use as a component of a modified silencer for heating ventilation

and air-conditioning (HVAC) ducting systems. The model

problem and the traveling wave form for the duct regions was

formulated by utilizing the orthogonality relations appropriate to

the eigen value problem derived through separation of variable

procedure. The boundary value problem has been reduced to an

infinite system of algebraic equations which requires the use of

mode matching technique, which in fact, is not limited either to

waveguides with planar boundaries or to two-part problems. The

infinite system of equations have been solved by truncating the

higher order modes and the system converged adequately. The

discussion based on numerical results and physical aspects of

elastic plate and membrane bounded ducts was presented in detail

whereas the dimensions of the parameter were consistent with that

of a typical HVAC duct. It is observed that in case of fundamental

mode incidence the use of pin-jointed edge conditions contributed

in minimizing the power transmission as compared to the clamped

edge conditions. However, for secondary mode incidence the rates

of power distribution in duct sections is increased. It is worth

mentioning that the conservation of power and matching interface

conditions guarantee the validity of the mode-matching solution.
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