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An intermediate range solution to a diffraction problem with impedance conditions
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An intermediate range solution for the problem of plane wave diffraction by a finite plate with impedance boundaries is
presented. Initially, the problem is expressed in terms of two Wiener–Hopf equations with the help of Fourier transform
and the boundary conditions in the transformed domain. The consideration of the intermediate range approximation in
terms of source position renders integrals that are generally elusive to tackle because of the presence of branch points.
These integrals are evaluated by invoking a modified stationary phase method, thereby a field valid over an intermediate
range is calculated. The graphical analysis is preformed for various parameters of physical interest for both intermediate
and far-field solutions.
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1. Introduction

Acoustic relationships that produce sound and zones of
turbulence are exhibited [1] by the diffraction of acoustic
quadruples. Curle [2] examined the sound theory by en-
countering the effects of boundaries in the flow. Since then,
many scientists fixated on the surface inhomogeneities with
diverse geometries having assorted boundary conditions.
In order to cater to various industrial problems, approxi-
mate boundary conditions such as absorbing [3] and Myers’
impedance conditions [4] attracted shear attention by many
researchers and have been used for computational purposes
effectively [5–8]. Recently, Ayub et al. [9,10] used first-
order impedance conditions to study magnetic line source
and point source scattering by impedance and reactive steps.
Moreover, a detailed use of higher-order boundary condi-
tions can be found in literature, see for instance [11–13]
and articles referred therein. Furthermore, diffraction by a
finite strip satisfying Ingard’s conditions has been studied
by Nawaz [14] whereas diffraction of spherical acoustic
wave from an absorbing plane is investigated by Asghar
and Hayat [6].Ayub et al. [7] andAhmad [8] studied diffrac-
tion of sound waves using Myers’ boundary conditions and
presented improved forms of solutions. Single or multi-
ple diffraction patterns from a strip are presented invok-
ing various analytical, numerical or approximate analytical
methods such as geometrical theory of diffraction [15],
Kobayashi’s potential method [16,17], method of

∗Corresponding author. Email: rabnawaz@ciitwah.edu.pk

successive approximations [18] and the Wiener–Hopf
techniques [19].

In order to put it in a proper context, we highlight the
important features of the present investigation. This work
is devoted to study a new diffraction problem of a plane
acoustic wave incidence on a finite conducting plate. The
boundary conditions used in this investigation are of the
first-order impedance type which relate wave field and its
normal derivative. A detailed exposition of such conditions
can be found in the work of Senior and Volkais [20], for
example. These conditions are effectively used to model
radio wave propagation along the surface of earth and near
conducting obstacles. The significance of such conditions is
comprehensively established by Pelosi and Ufimtsev [21].
The finite conducting plate occupies the surface y = 0,
−l < x < 0 with a velocity of the moving fluid par-
allel to the x-axis having magnitude U > 0. The fluid
is assumed to be flowing uniformly along the plate. The
governing equations are linearized and the special effects
of viscosity, thermal conductivity and gravity are ignored
whereas the fluid is assumed to have a constant density (in-
compressible fluid) and sound speed c. We precise that the
aim is to see the effect of incident wave (which ultimately
produces a diffracted field) on the finite conducting plate
while considering the impedance boundary conditions. The
aforementioned problem is solved rigorously by using the
Wiener–Hopf technique. The main feature of the technique

© 2014 Taylor & Francis
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is that it is not fundamentally numerical in nature and thus
allows additional insight into the mathematical and physical
structure of the diffracted field.

The problem under discussion has wider applications
in acoustics and electromagnetics. A strip problem with
impedance boundary conditions can also be treated as a
mathematical model for a noise barrier lined with different
material properties. Such barriers are the better source for
the reduction of noise levels at airports or roadsides for
instance. The field radiated from the edges of the finite
barrier may only affect a receiver in the shadow region
of such a barrier which can be done by lining the barrier
with different acoustically absorbent materials. The work
may also have significant applications in electromagnetism
where a thin dielectric layer can be considered on a per-
fectly conducting finite plate which will act as a waveguide
launcher.

The solution to the aforementioned problem is presented
in the intermediate range. In far-field approximations,
emerging integrals involve the terms of O(1/

√
k R)whereas

the consideration of intermediate range approximation in
terms of source position retains the terms of O(1/

3
√

k R)

in the expansion of the Hankel function where k is the
wavenumber and R is the source to receiver distance. Con-
sideration of such terms leads to more involved integrals in
the inverse Fourier transform, which are generally intrigu-
ing to handle because of the presence of branch points and
are only amenable to solutions using asymptotic approxi-
mations (a little discrepancy in the solution is observed for
creating values of parameters). The analytic solutions of
these integrals are computed by invoking a modified station-
ary phase technique and the field for an intermediate range
in terms of the source position is calculated following the
arguments of Noble [22]. In this investigation, the integral
transforms, Wiener–Hopf technique [19] and asymptotic
methods [23] are blended to compute the diffracted field.
The far-field results can be regarded as a limiting case when
the source position is shifted from intermediate range to a
far off range, that is, when the terms of O(1/

3
√

k R) are
neglected. A graphical comparison between the far field
and the intermediate field is presented for different phys-
ical parameters. Certainly, the intermediate range solution
provides further insight of the diffracted field as compared
to the far-field solution.

The rest of the paper is organized in following man-
ner. In Section 2, the diffraction problem is mathematically
formulated. The standard Wiener–Hopf functional equa-
tions are constructed in the transformed domain in Section
3. Section 4 is dedicated to the Wiener–Hopf procedure
to resolve the transformed functional equations. Section 5
deals with an intermediate approximation of the diffracted
field. A few numerical illustrations are provided in
Section 6. The paper ends with a few concluding remarks in
Section 7.

2. Mathematical formulation

The model problem consists of a plane wave incidence on
an impedance finite conducting plate (−l ≤ x ≤ 0, y = 0
where l is the strip length) which is encountering a small
gust with uniform flow parallel to it with velocity amplitude
U . The plate is supposed to be infinitely thin and straight.
We decompose the total field � t

e as

� t
e(x, y) = �i (x, y) + �r (x, y) + �e(x, y), (1)

where �i and �r are the plane wave incident and reflected
fields, respectively, at y = 0 and are given by

�i (x, y) = exp [−ik(x cos θ0 + y sin θ0)] , (2)

and

�r (x, y) =
(

1 − β1 sin θ0

1 + β1 sin θ0

)
exp[−ik(x cos θ0−y sin θ0)],

(3)
for all (x, y) ∈ R

2, where β1 is the admittance parameter
and θ0 is the incidence angle. The diffracted field �e is the
solution to the Helmholtz equation(

∂2

∂x2
+ ∂2

∂y2
+ k2

)
�e(x, y) = 0, (x, y) ∈ R

2. (4)

Here k is the free-space wavenumber such that k = k1 + ik2
with (0 < k2 � k1) and the time dependence is e−iωt . The
medium is assumed to be slightly lossy and the solution for
real k is achieved by letting k2 → 0.

The boundary conditions on a transmissive finite plate are
the first-order impedance (Leontovich) conditions relating
field and its normal derivative and sometimes also stated as
standard impedance boundary conditions [12]. Mathemati-
cally, the first-order impedance conditions are given by(

∂

∂n
− ik

z

β1

)
φ = 0, (5)

where φ is the velocity potential, β1 is the normal specific
impedance of the material relative to the impedance of the
surrounding medium such that �e{β1} > 0 whereas z is
the intrinsic impedance of the surrounding medium. Here,
∂/∂n represents the normal derivative where n is outward
unit normal to the boundary.

As we are interested in finding the diffracted field due to
plane wave incidence on the impedance finite plate, mixed
type Neumann and Dirichlet conditions are taken along
the plate line. Therefore, the total diffracted field � t

e can
be determined with the following boundary and continuity
conditions(

1 ± β1

ik

∂

∂y

)
� t

e(x, 0±) = 0, x ∈ [−l, 0], (6)

� t
e(x, 0+) = � t

e(x, 0−), x ∈ R \ [−l, 0], (7)
∂

∂y
� t

e(x, 0+) = ∂

∂y
� t

e(x, 0−), x ∈ R \ [−l, 0]. (8)
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1326 R. Nawaz et al.

The above equations are the admissible conditions from the
mathematical point of view and are acoustic counterpart of
those satisfied by an electrically resistive finite plate. The
modeling of propagation of radio waves along the surface
of earth and near conducting barriers is an area where these
impedance boundary conditions can be used. Further impor-
tance and applications are discussed and explained in [24].
Moreover, the time harmonic factor e−iωt is suppressed
throughout the analysis.

3. Construction of Wiener–Hopf functional equations

The Wiener–Hopf technique has been the object of the sci-
entific attention of many researchers and due to this tech-
nique, many important developments have been achieved.
Likewise, in Equations (18)–(19), a vast variety of phys-
ically relevant problems can be expressed in terms of the
equation originally solved by Wiener and Hopf or to strictly
connected ones. In diffraction problems, a fundamental ap-
proach due to Jones [25] applies the Laplace transforms
directly to the partial differential equations, and the complex
variable functional equations are so obtained without having
to formulate an integral equation before. The approach taken
by Jones [25] has been adopted systematically in many
diffraction problems, see for instance [7,8,14,22,26]. There-
fore, in order to obtain the solution using a Wiener–Hopf
technique, we adopt the Jones approach by which we first
transform the boundary value problem (4)–(8) in this section
using Fourier transform with respect to variable x thereby
constructing the associated Wiener–Hopf functional equa-
tions. Precisely, let us introduce

�e(α, y) = 1√
2π

∫ ∞

−∞
�e(x, y)eiαx dx

= �e+(α, y) + e−iαl�e−(α, y) + �e1(α, y),

(9)

where α = �e{α} + i
m{α} = σ + iτ and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�e+(α, y) = 1√
2π

∫ ∞

0
�e(x, y)eiαx dx,

�e−(α, y) = 1√
2π

∫ −l

−∞
�e(x, y)eiα(x+l)dx,

�e1(α, y) = 1√
2π

∫ 0

−l
�e(x, y)eiαx dx .

Note that the asymptotic behavior of �e(x, y) as |x | →
∞ is

�e(x, y) =
{

O (exp(−ikx)) ,

O (exp(−kx cos θ0))
(10)

whereas �e−(α, y) is an analytic and non-zero function
of α in the region 
m{α} < 
m{k}, �e+(α, y) is reg-
ular in 
m{α} > −
m{k} and �e1(α, y) is analytic in
the common region −
m{k} < 
m{α} < 
m{k} provid-
ing the analytic region in the given strip, for the use of
Wiener–Hopf technique.

For a plane wave incident on a finite plate, the incident
field (2) is given in the transformed domain as

� i (α, 0) = exp [ikl(cos θ0 − α)] − 1

ik(cos θ0 − α)
. (11)

Similarly, the reflected field �r at y = 0 in the transformed
domain α is given by

�r (α, 0) =
(

1 − β1 sin θ0

1 + β1 sin θ0

)
i [exp[ikl(cos θ0 − α)] − 1]

k(cos θ0 − α)
.

(12)
The Helmholtz Equation (4) is given in the transformed
domain by

(
d2

dy2
+ γ 2

)
�(α, y) = 0, (13)

where γ (α) = √
k2 − α2 with �e{γ (α)} > 0. Equation

(13) is the wave equation in the transformed domain which
is valid for any α in the strip −k2 < 
{α} < k2 cos θ0. The
Fourier transform of boundary conditions (6)–(8) yields

�
′
e1(α, 0+) = − ik

β1

[
� i (α, 0) + �r (α, 0)

]
−

[
�

′
i (α, 0) + �

′
r (α, 0)

]
− ik

β1
�e1(α, 0+),

(14)

�
′
e1(α, 0−) = ik

β1

[
� i (α, 0) + �r (α, 0)

]
−

[
�

′
i (α, 0) + �

′
r (α, 0)

]
+ ik

β1
�e1(α, 0−),

(15)

and ⎧⎪⎪⎨
⎪⎪⎩

�e−(α, 0+) = �e−(α, 0−) = �−(α, 0),

�e+(α, 0+) = �e+(α, 0−) = �+(α, 0),

�
′
e−(α, 0+) = �

′
e−(α, 0−) = �

′
e−(α, 0),

�
′
e+(α, 0+) = �

′
e+(α, 0−) = �

′
e+(α, 0).

(16)

Note that the solution of Equation (13) satisfying radiation
condition as |x | → ∞ is given by

�e(α, y) =
{

A1(α)eiγ y, y ≥ 0,

A2(α)e−iγ y, y < 0.
(17)

Omitting the detailed calculations for brevity, by virtue of
Equations (14)–(17), we arrive at

�
′
e+(α, 0) + e−iαl�

′
e−(α, 0) − iγ (α)L(α)J1(α, 0)

= �
′
i (α, 0) + �

′
r (α, 0), (18)

�e+(α, 0) + e−iαl�e−(α, 0) + β1

ik
L(α)J ′

1(α, 0)

= � i (α, 0) + �r (α, 0), (19)
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where

J1(α, 0) = 1

2

[
�e1(α, 0+) − �e1(α, 0−)

]
, (20)

J ′
1(α, 0) = 1

2

[
�

′
e1(α, 0+) − �

′
e1(α, 0−)

]
, (21)

L(α) =
(

1 + k

β1γ (α)

)
, (22)

and

A1(α) = J1(α, 0) + J ′
1(α, 0)

iγ
, (23)

A2(α) = −J1(α, 0) + J ′
1(α, 0)

iγ
. (24)

Equations (18)–(19) are the standard Wiener–Hopf func-
tional equations. In next section, we adopt the Wiener–Hopf
procedure to resolve (18)–(19).

4. Wiener–Hopf solution

Equations (18)–(19) represent the three-part boundary value
problem and one cannot solve these equations by using any
conventional method such as standard integral transform
or separation of variable. Here, a standard Wiener–Hopf
procedure is adopted by using the factorization

L(α) =
(

1 + k

β1γ (α)

)
= L+(α)L−(α), (25)

and

γ (α) = γ+(α)γ−(α), (26)

where L+(α) and γ+(α) are analytic and non-zero in the
domain 
m{α} > −
m{k}, that is, for upper half plane
while L−(α) and γ−(α) are analytic and non-zero in the
region 
m{α} < 
m{k}, that is, lower half plane. The above
factorization is achieved by following the factorization pro-
cedure as discussed by Asghar et al. [24].

By using the value of J1(α, 0) and J ′
1(α, 0) from Equa-

tions (18)–(19), into (23) and (24), it is found that

A1(α) = 1

iγ L(α)
(�

′
e+(α, 0) + e−iαl�

′
e−(α, 0)

− �
′
i (α, 0) − �

′
r (α, 0))

− ik

β1L(α)
(�+(α, 0) + e−iαl�−(α, 0)

− � i (α, 0) − �r (α, 0)), (27)

and

A2(α) = − 1

iγ L(α)
(�

′
e+(α, 0) + e−iαl�

′
e−(α, 0)

− �
′
i (α, 0) − �

′
r (α, 0))

− ik

β1L(α)
(�+(α, 0) + e−iαl�−(α, 0)

− � i (α, 0) − �r (α, 0)). (28)

Making use of Equations (11) and (12) in Equations (18)
and (19), we obtain

�
′
e+(α, 0) + e−iαl�

′
e−(α, 0) + S(α)J1(α, 0)

= hb[exp[ikl(cos θ0 − α)] − 1]
(cos θ0 − α)

, (29)

and

�e+(α, 0) + e−iαl�e−(α, 0) + β1

ik
L+(α)L−(α)J ′

1(α, 0)

= −b[exp[ikl(cos θ0 − α)] − 1]
ik(cos θ0 − α)

, (30)

where

b =
[(

1 − β1 sin θ0

1 + β1 sin θ0

)
− 1

]
and h = sin θ0.

Here

S(α) = −iγ (α)L(α) = S+(α)S−(α), (31)

where S+(α) = (k + α)1/2L+(α) and S−(α) = (k − α)1/2

L−(α) are regular in upper and lower half planes (α =
σ + iτ, −k2 < τ < −k2 cos θ0), respectively.

Equations (29) and (30) are similar to the one already dis-
cussed in the monograph by Noble [22] and investigations
based on his approach are utilized to get an approximate
solution in the intermediate range. The terms of Equations
(29)–(30) with negative sign on one side of the equation
are equated with the terms with positive sign on the other
side, which in result will be equal to a same entire function
say J (α). By the analytic continuation and extended form
of Liouville’s theorem, J (α) can be extended throughout
the complex α-plane and the polynomial that is represented
by the entire function J (α) is equated to zero. Ignoring the
details for brevity and following the procedure given in [22],
finally it is found that

�
′
e+(α, 0) = bhS+(α)√

2π
[G1 (α) + T (α) C1] , (32)

�
′
e−(α, 0) = bhS−(α)√

2π
[G2 (−α) + T (−α) C2] , (33)

�e+(α, 0) = −bβ1L+(α)√
2πk

[
G ′

1 (α) + T (α) C ′
1

]
, (34)

�e−(α, 0) = bβ1L−(α)√
2πk

[
G ′

2 (−α) − T (−α) C ′
2

]
, (35)

where

G1 (α) = 1

(α − cos θ0)

×
[

1

S+(cos θ0)
− 1

S+(α)

]
− e−il cos θ0 R1 (α) ,

(36)

G2 (α) = e−il cos θ0

(α − cos θ0)

[
1

S+(− cos θ0)
− 1

S+(α)

]
− R2 (α) , (37)

D
ow

nl
oa

de
d 

by
 [

C
O

M
SA

T
S 

In
st

itu
te

 o
f 

In
fo

rm
at

io
n 

T
ec

hn
ol

og
y]

 a
t 1

0:
46

 1
0 

Se
pt

em
be

r 
20

14
 



1328 R. Nawaz et al.

C1 = S+(k)

[
G2 (k) + S+(k)G1 (k) T (k)

1 − S2+(k)T 2 (k)

]
, (38)

C2 = S+(k)

[
G1 (k) + S+(k)G2 (k) T (k)

1 − S2+(k)T 2 (k)

]
, (39)

and

G ′
1 (α) = ik

(α + cos θ0)

[
1

L+(− cos θ0)
− 1

L+(α)

]
− e−il cos θ0 R1 (α) , (40)

G ′
2 (α) = e−il cos θ0

(α − cos θ0)

[
α

L+(α)
+ cos θ0

L+(cos θ0)

]
− R2 (α) , (41)

C ′
1 = L+(k)

[
G ′

2 (k) + L+(k)G ′
1 (k) T (k)

1 − L2+(k)T 2 (k)

]
,

(42)

C ′
2 = L+(k)

[
G ′

1 (k) + L+(k)G ′
2 (k) T (k)

1 − L2+(k)T 2 (k)

]
.

(43)

Here⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R1 (α)

= E−1[W−1{−i (k + cos θ0) l} − W−1{−i (k + α) l}]
2π i(α − cos θ0)

,

R1,2 (α)

= E−1[W−1{−i (k − cos θ0) l} − W−1{−i (k + α) l}]
2π i(α + cos θ0)

,

(44)

Figure 1. Amplitude of the diffracted field vs. the observation angle for different values of the incidence angle θ0 when k = 1, l = 2 and
β1 = 0.1. (The colour version of this figure is included in the online version of the journal.)

Figure 2. Amplitude of the diffracted field vs. the observation angle for different values of admittance parameter β1 when k = 1, l = 2
and θ0 = π

4 . (The colour version of this figure is included in the online version of the journal.)
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T (α) = 1

2π i
E−1W−1{−i (k + α) l}, (45)

E−1 = 2ei π
4 eikl i−1l1/2h−1, (46)

Wn− 1
2
(p) =

∫ ∞

0

une−u

u + p
du

=  (n + 1) ez/2zn/2−1/2W− 1
2 (n+1), 1

2 n(p),

(47)

with p = −i (k + α) l, n = −1/2 and Wm,n is known as
a Whittaker function.

Now making use of Equations (32)–(35) in Equations
(27)–(28), it is found that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1(α) = 1√
2π iγ (α)L(α)

{
S+(α)G1 (α) + S+(α)T (α) C1 + e−iαl S−(α)

× [G2 (−α) + T (−α) C2] − hb(1−e−il(cos θ0−α))
(cos θ0−α)

}

− ik√
2πβ1 L(α)

⎧⎨
⎩

L+(α)G ′
1 (α) + T (α) L+(v)C ′

1 + e−iαl

×[ (
L−(α)G ′

2 (−α) + T (−α) L+(v)C ′
2

) ] − b
(

1−e−il(cos θ0−α)
)

k(cos θ0−α)

⎫⎬
⎭ ,

A2(α) = −1√
2π iγ (α)L(α)

{
S+(α)G1 (α) + S+(α)T (α) C1 + e−iαl S−(α)

× [G2 (−α) + T (−α) C2] − hb(1−e−il(cos θ0−α))
(cos θ0−α)

}

− ik√
2πβ1 L(α)

⎧⎨
⎩

L+(α)G ′
1 (α) + T (α) L+(v)C ′

1 + e−iαl

×[ (
L−(α)G ′

2 (−α) + T (−α) L+(v)C ′
2

) ] − b
(

1−e−il(cos θ0−α)
)

k(cos θ0−α)

⎫⎬
⎭ ,

(48)

The expression includes the effect of impedance parameter
β, where β = 1/β1, that can also be seen from the solution.
Now, we shall derive a diffracted field expression explicitly
in the real space by using the results obtained in (48). The
diffracted acoustic field �e(x, y) is obtained by taking the
inverse Fourier transform of Equation (17), that is,

�e(x, y) = 1√
2π

∞∫
−∞

{
A1(α)

A2(α)

}
exp(iγ |y| − iαx)dα,

(49)
where A1(α) and A2(α) are given in Equation (48).

5. Intermediate range approximations

The diffracted field in the intermediate range may now be
calculated by evaluating the integrals appearing in Equation
(49), asymptotically [23]. Let us introduce the polar coordi-
nates as x = R cos θ , |y| = R sin θ and deform the contour
by the transformation α = −k cos (θ + iq), (0 < θ < π ,
−∞ < q < ∞). Then, the Equation (49) reduces to

�e(x, y) = 1√
2π

∞∫
−∞

A1(−k cos (θ + iq))

A2(−k cos (θ + iq))

}
eik R cosh qdq.

(50)
In order to get intermediate range solution, the Maclau-

rin’s series expansions of the terms A1(−k cos (θ + iq))and

Figure 3. Amplitude of the diffracted field vs. the observation angle for different values of admittance parameter β1 when k = 2, l = 2
and θ0 = π

4 . (The colour version of this figure is included in the online version of the journal.)
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A2(−k cos (θ + iq)) are introduced in the above integral to
get

�e(x, y) = 1√
2π

∞∫
−∞

A1(−k cos θ) + q A′
1(−k cos θ) + q2

2! A′′
1(−k cos θ) + · · ·

A2(−k cos θ) + q A′
2(−k cos (θ)) + q2

2! A′′
2(−k cos θ) + · · ·

⎫⎪⎬
⎪⎭ eik R cosh qdq.

The second term in the above integral disappears during
mathematical manipulations and consequently the integral
then reduces to

�e(x, y)

= 1√
2π

∞∫
−∞

A1(−k cos θ) + q2

2! A′′
1(−k cos θ) + · · ·

A2(−k cos θ) + q2

2! A′′
2(−k cos θ) + · · ·

⎫⎪⎬
⎪⎭

×eik R cosh qdq, (51)

where A1(−k cos θ), A′′
1(−k cos θ), A2(−k cos θ) and

A′′
2(−k cos θ) can be calculated from Equation (48). In fact,

if A1,2(−k cos (θ0 + iq)) may be extended in the neighbor-
hood of q = 0 (stationary point), then

⎧⎪⎨
⎪⎩

A1(−k cos (θ + iq)) = A1(−k cos θ) + q A′
1(−k cos θ) + q2

2! A′′
1(−k cos θ) + O

(
q3

)
A2(−k cos (θ + iq)) = A2(−k cos θ) + q A′

2(−k cos (θ)) + q2

2! A′′
2(−k cos θ) + O

(
q3

) . (52)

The intermediate range R0 is supposed not to be at a far off
distance. So one can apply a slightly modified version of
the stationary phase method [23] to Equation (51). Thus,
the diffracted field in the intermediate range is given as

�e(x, y) = ik√
2π

( π

2k R

)1/2

×
{

A1(−k cos θ)

A2(−k cos θ)

}
sin θ exp

(
ik R + i

π

4

)

+
{

A′′
1(−k cos θ)

A′′
2(−k cos θ)

} √
2π

(k R)3
sin θ

× exp
(

ik R + i
π

4

)
. (53)

where A1(−k cos θ), A2(−k cos θ), A′′
1(−k cos θ) and

A′′
2(−k cos θ) can be calculated with the help of Equation

(48). The expression given in Equation (53) gives the inter-
mediate field asymptotic expression of the diffracted field
while having asymptotic expansion of �e(x, y) valid for
any value of observation angle throughout the domain.

6. Numerical illustrations

In this section, the graphical behavior (energy radiated by
the diffracted field) for different values of physical param-
eters such as incident angle, specific admittance parameter

and wavenumber is discussed. We are interested to see
how a finite barrier with impedance boundary conditions

could be best used to reduce the sound intensity between a
source and receiver. The scattering phenomenon is observed
computationally by exhibiting the variation of amplitude of
diffracted field [20 log] with the observation angle
(Figures 1–4). Figures 1(a)–4(a) show the intermediate
range solution for a plane wave incident at an angle θ0 =
π/4 on a conducting plate whereas Figures 1(b)–4(b) show
the far-field solution for a plane wave incident.The diffracted
field in the shadow region from the edge remains largely
unchanged in both cases when θ0 = π/4 and θ0 = −π/4
due to the symmetry of the problem. In fact, the reciprocity
theorem holds, that is, the ratio of pressure amplitude to
source strength remains unchanged when we interchange
the locations of the source and the receiver. It is concluded
that the diffracted amplitude decreases considerably in the

region 0 < θ < 3π/4 for intermediate range solution,
whereas the amplitude increases when receiver is located
in the same region (far-range). In each case, noise level is
reduced considerably as the receiver approaches the finite
conducting plate. A common observation can be made in all
cases that there is an apparent reduction of sound intensity
when source and receiver are taken in the intermediate range
as compared to far-field results (by letting R → ∞). The
finite plate is assumed to be of length 2− units in each case.

In Figure 1(a) and (b), the results are presented for the
case of intermediate and far-field approximations, respec-
tively, for different values of incident angle θ0 by fixing all
other parameters. It is observed that the amplitude of the
diffracted field in the intermediate zone is higher when po-
sition of line source is brought closer to the diffraction edge
instead of lying far away. The fundamental trend for both
the approximations appears to be different (one having a
decreasing trend while the other is showing increasing trend
up to certain values of observation angle θ ). The amplitude
for intermediate approximations has sharper peaks than for
far-field approximations.

Figures 2(a)–3(a) and 2(b)–3(b) are plotted for different
values of specific admittance when wavenumber is taken to
be k = 1 and k = 2, respectively. Figures 2(a) and 3(a)
are plotted for intermediate approximations while Figures
2(b) and 3(b) are plotted for far-field approximations. It can
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Figure 4. Amplitude of the diffracted field vs. the observation angle for different values of wavenumber k when l = 2, β1 = 0.5 and
θ0 = π

4 . (The colour version of this figure is included in the online version of the journal.)

be seen that the amplitude of the diffracted field increases
by increasing the value of β1 and causes little oscillation
on increasing the value of k. In Figure 3(a), the region
5π/6 < θ < π is showing a singular effect when the value
of wavenumber is slightly increased up to one unit.

Figure 4(a) and (b) is plotted for intermediate and far-
field approximations, respectively, by considering different
values of wave number k. Here, the behavior of diffracted
field does not deviate very much for different values of wave
number k but overall the amplitude of the diffracted field is
considerably larger as compared to other parameters θ0, β1
and the plate length l. It is mentioned that in Figures 2–4,
the trends for both the intermediate approximations and
far-field approximations are almost similar as observed in
Figure 1(a) and (b).

7. Concluding remarks

An intermediate range solution for a plane wave incident on
a finite conducting plate with different impedance boundary
conditions on upper and lower faces is examined. Wiener–
Hopf procedure is used to find an ultimate solution which
is rigorous and uniformly valid (without restriction on the
absorbing properties). The main idea behind the consid-
eration of intermediate zone solution is to visualize the
diffracted pattern more clearly than in far-field zone. It can
be seen that the far-field solution and the intermediate zone
solution differ by a multiplicative factor. In case of far-
field approximation, the source position is assumed to be
at a very large distance so that terms up to O(1/

√
k R) are

retained while other terms are ignored where k is the R is the
source to receiver distance. But, in the intermediate range
solution, terms of O(1/

3
√

k R) are also retained, that is, the
position of source brought closer to the finite conducting
plate. The term comprising O(1/

3
√

k R) gives rise to an
extra term in the diffracted field which produces a stronger

field with more visible and clear diffraction pattern. The
diffracted field for both, the far- and the intermediate-field
approximations differ by a factor{

A′′
1(−k cos θ)

A′′
2(−k cos θ)

} √
2π

(k R)3
sin θ exp

(
ik R + i

π

4

)
.

When R → ∞, terms of O(1/
3
√

k R) become negligible
thereby rendering the solution valid over far-field range.
Influence of various parameters on the diffracted field ob-
tained via intermediate/far range approximation are
presented and debated. Finally, it is substantiated that the
intermediate range solution is a better choice as far as the
accuracy of asymptotic expansion is concerned.
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