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Solution-Key

Q.1 Consider the matrix

1 3 2
a 6 2
0 9 5

 where a is a real number. For what value of a is the matrix

singular?

Ans. There can be different ways to determine a so that the given matrix is singular. The first
way is to find the determinant of the matrix and set it to be equal to zero so that the matrix
is singular. By solving the resulting equation we can find the value of a. The second way
is to consider the augmented matrix [A | I3] where A denotes the given matrix and I3 is the
3 × 3 identity matrix. We derive the reduced echelon form of this augmented matrix and
suggest the value of a so that the augmented matrix does not have 3 pivot positions. The
third way is to simply find the echelon form of the given matrix A and set the product of
the diagonal elements of the echelon form equal to zero so that A does not become row
equivalent to I3 and is, therefore, singular. Here, we try out the last technique. Consider

A :=

1 3 2
a 6 2
0 9 5

∼
1 3 2

0 6− 3a 2− 2a
0 9 5

 (R2 → R2 − aR1)

∼

1 3 2
0 9 5
0 6− 3a 2− 2a

 (R12)

∼

1 3 2
0 9 5

0 0 2(1− a)− 5(2−a)
3

 (R3 → R3 −
(2− a)

3
R2).

So, the matrix is singular if and only if 2(1− a)− 5(2−a)
3 = 0, i.e., 6(1− a)− 5(2− a) = 0 or

equivalently, a = −4.

Q.2 Find the inverse of


1 0 0 0
1
4 1 0 0
1
3

1
3 1 0

1
2

1
2

1
2 1

.

Ans. Let H be the given matrix. Note that the matrix is lower triangular and has non-zero
diagonal elements. Therefore, H is invertible. In order to find its inverse, we can use
the classical technique of minors and cofactors and then evaluate the inverse using H−1 =
(det(H))−1 adj(H). However, it will be very tedious. The second and more elegant way is
to form the augmented matrix [H | I4] and reduce it to a reduced echelon form so that the
inverse can be identified on the right half of the reduced augmented matrix. Albeit, it is
better than the previous approach, it still does not exploit the structure of the matrix H.
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We need to make use of the lower triangular form of the matrix H. Note that HT is an
upper triangular matrix (thus in echelon form). Moreover, (HT )−1 = (H−1)T . Therefore,
instead of calculating the inverse of H, we find the inverse of HT . This way we can reduce
our work done by half as compared to directly inverting H using reduced echelon form of
the augmented matrix [H | I4]. Towards this end, consider the augmented matrix [HT | I4]
as

[HT | I4] =


1 1

4
1
3

1
2 1 0 0 0

0 1 1
3

1
2 0 1 0 0

0 0 1 1
2 0 0 1 0

0 0 0 1 0 0 0 1



∼


1 0 1

4
3
8 1 −1

4 0 0
0 1 1

3
1
2 0 1 0 0

0 0 1 1
2 0 0 1 0

0 0 0 1 0 0 0 1

 (R1 −
1

4
R2)

∼


1 0 0 1

4 1 −1
4 −1

4 0
0 1 0 1

3 0 1 −1
3 0

0 0 1 1
2 0 0 1 0

0 0 0 1 0 0 0 1

 (R1 −
1

4
R3 and R2 −

1

3
R3)

∼


1 0 0 0 1 −1

4 −1
4 −1

4
0 1 0 0 0 1 −1

3 −1
3

0 0 1 0 0 0 1 −1
2

0 0 0 1 0 0 0 1

 (R1 −
1

4
R4, R2 −

1

3
R4, and R3 −

1

2
R4).

Therefore, we have

(
HT
)−1

=


1 −1

4 −1
4 −1

4
0 1 −1

3 −1
3

0 0 1 −1
2

0 0 0 1

 =
(
H−1

)T
.

Taking the transpose on both sides we arrive at

H−1 =


1 0 0 0
−1

4 1 0 0
−1

4 −1
3 1 0

−1
4 −1

3 −1
2 1

 .

Q.3 Recall that a set B of vectors of a subspace S of Rn is called a basis of S if B is linearly

independent and it spans S. Let u =
[
2 0 −1

]T
, v =

[
3 1 0

]T
, and w =

[
1 −1 c

]T
where c ∈ R. Find the value(s) of c such that the set B := {u,v,w} form a basis of R3.
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Ans. First remark that if u,v, and w are linearly independent then they must span R3 as
dim(R3) = 3. So any set of three linearly independent vectors will form a basis of R3

(try to verify this). Therefore, it is sufficient to find c such that the collection B is linearly
independent. Toward this end, we consider the linear combination

c1u + c2v + c3w = 0, (1)

and solve it for c1, c2, and c3. This can be equivalently written as 2 3 1
0 1 −1
−1 0 c

c1
c2
c3

 =

0
0
0

 .

We find the echelon form of the coefficient matrix as follows 2 3 1
0 1 −1
−1 0 c

 ∼
 1 3/2 1/2

0 1 −1
−1 0 c

 (R1 →
1

2
R1)

∼

1 3/2 1/2
0 1 −1
0 3/2 c + 1/2

 (R3 → R3 + R1)

∼

1 3/2 1/2
0 1 −1
0 0 c + 2

 (R3 → R3 −
3

2
R2).

Note that for c + 2 = 0 the coefficient matrix will be rank deficient and constant c3 will
become a free variable. Thus, there will be non-trivial solutions to the system (1). Thus,
the collection B is linearly independent and hence, forms a basis of R3 if and only if c 6= −2.

Q.4 Define a transformation T : R3 → R4 by

T (x) = T

x1
x2
x3

 :=


x1 − x3
x1 + x2
x3 − x2
x1 − 2x2

 , for all x ∈ R3.

(a) Find T (x) for xT :=
(
1 −2 3

)
.

Ans. It is easy to calculate

T (x) = T

 1
−2
3

 =


1− 3

1 + (−2)
3− (−2)
1− 2(−2)

 =


−2
−1
5
5

 .
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(b) Show that T is a linear transformation.

Ans. We verify that T (cx) = cT (x) for all c ∈ R and for all x ∈ R3, and T (x + y) =
T (x) + T (y) for all x,y ∈ R3. We have, for any x ∈ R3 and for any c ∈ R3,

T (cx) = T

c

x1
x2
x3

 = T

cx1
cx2
cx3

 =


cx1 − cx3
cx1 + cx2
cx3 − cx2
cx1 − 2cx2

 = c


x1 − x3
x1 + x2
x3 − x2
x1 − 2x2

 = cT (x).

Moreover, let x =
(
x1 x2 x3

)T
,y =

(
y1 y2 y3

)T ∈ R3 be two arbitrary vectors.
Then

T (x + y) =

x1
x2
x3

+

y1
y2
y3

 = T

x1 + y1
x2 + y2
x3 + y3

 =


(x1 + y1)− (x3 + y3)
(x1 + y1) + (x2 + y2)
(x3 + y3)− (x2 + y2)
(x1 + y1)− 2(x2 + y2)



=


x1 − x3
x1 + x2
x3 − x2
x1 − 2x2

+


y1 − y3
y1 + y2
y3 − y2
y1 − 2y2

 = T (x) + T (y).

(c) Find the matrix A of transformation T such that T (x) = Ax.

Ans. Apparently, the matrix of transformation, A, is given by

A =


1 0 −1
1 1 0
0 −1 1
1 −2 0

 .

A more systematic way is to use the standard (usual) basis


1

0
0

 ,

0
1
0

 ,

0
0
1

 of

R3 as follows. Since,

T

1
0
0

 =


1
1
0
1

 , T

0
1
0

 =


0
1
−1
−2

 , T

0
0
1

 =


−1
0
1
0

 .

Therefore, the transformation matrix of T is given by

A =

T

1
0
0

 T

0
1
0

 T

0
0
1

 =


1 0 −1
1 1 0
0 −1 1
1 −2 0

 .
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(d) The Kernel of aforementioned T : R3 → R4, denoted by ker(T ), is defined to be the
set of all x in R3 such that Tx = 0. It is also called the null space of T . Find
ker(T ).

Ans. In order to find ker(T ), we find all x ∈ R3 such that T (x) = 0. From the part (c),
we know that T (x) = Ax. Therefore, ker(T ) is the solution set of the homogeneous
system Ax = 0. Towards this end, we reduce the matrix A to its reduced echelon form
as follows.

A =


1 0 −1
1 1 0
0 −1 1
1 −2 0



∼


1 0 −1
0 1 1
0 −1 1
0 −2 1

 , (R2 → R2 −R1, R4 → R4 −R1)

∼


1 0 −1
0 1 1
0 0 2
0 0 3

 , (R3 → R3 + R2, R4 → R4 + 2R2)

∼


1 0 −1
0 1 1
0 0 1
0 0 1

 , (R3 →
1

2
R3, R4 →

1

3
R4)

∼


1 0 0
0 1 0
0 0 1
0 0 0

 , (R4 → R4 −R3, R1 → R1 + R3, R2 → R2 −R3).

Therefore, we have x1 = 0, x2 = 0, and x3 = 0 as the unique solution to the system
Ax = 0. Therefore, the ker(T ) = {0}.

(e) Show that the ker(T ) derived in part (d) is a subspace of R3.

Ans. From part (d), it is clear that ker(T ) = {0} ⊂ R3, which is a trivial subspace of R3.
There is nothing to prove.

(f) Find dim(ker(T )), i.e., the dimension of subspace ker(T ). (Hint: First express ker(T ) :=
span{v1, · · · } for some vector(s), then show that the vector(s) v1, · · · are linearly inde-
pendent.)

Ans. It is clear from parts (d) and (e) that the dim(ker(T )) = 0, since there is no non-zero
vector in ker(T ).

5



(g) The Range of aforementioned T : R3 → R4, denoted by rang(T ), is the set of all
b ∈ R4 such that T (x) = b for some x ∈ R3. Find rang(T ).

Ans. In order to find rang(T ), we identify all b ∈ R4 for which there exists at least one
x ∈ R3 such that T (x) = b. As T (x) = Ax from part(c), we actually solve the non-
homogeneous system Ax = b for arbitrary b and identify all vectors b for which the

system Ax = b is consistent. Consider b =
(
b1 b2 b3 b4

)T ∈ R4 arbitrary. Then
the augmented matrix of the non-homogeneous system is

[A |b] =


1 0 −1 b1
1 1 0 b2
0 −1 1 b3
1 −2 0 b4

 .

We perform Gaussian elimination method on the augmented matrix as follows,

[A |b] ∼


1 0 −1 b1
0 1 1 −b1 + b2
0 −1 1 b3
0 −2 1 −b1 + b4

 , (R2 → R2 −R1, R4 → R4 −R1)

∼


1 0 −1 b1
0 1 1 −b1 + b2
0 0 2 −b1 + b2 + b3
0 0 3 −3b1 + 2b2 + b4

 , (R3 → R3 + R2, R4 → R4 + 2R2)

∼


1 0 −1 b1
0 1 1 −b1 + b2
0 0 1 (−b1 + b2 + b3)/2
0 0 1 (−3b1 + 2b2 + b4)/3

 , (R3 →
1

2
R3, R4 →

1

3
R4)

∼


1 0 −1 b1
0 1 1 −b1 + b2
0 0 1 (−b1 + b2 + b3)/2
0 0 0 (−3b1 + b2 − 3b3 + 2b4)/6

 , (R4 → R4 −R3)

Therefore, for any vector b =
(
b1 b2 b3 b4

)T ∈ R4 to be in range of T , we must
have

−3b1 + b2 − 3b3 + 2b4 = 0 or equivalently b4 = (3b1 − b2 + 3b3)/2, (2)

otherwise the system Ax = b is inconsistent. Therefore,

rang(T ) =



b1
b2
b3
b4

 ∈ R4

∣∣∣∣∣ b1, b2, b3 ∈ R are arbitrary and b4 =
(3b1 − b2 + 3b3)

2

 .
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(h) Show that rang(T ) is a subspace of R4.

Ans. In order to prove that rang(T ) ⊂ R4 is a subspace of R4, we verify three properties.

1. 0 ∈ R4 belongs to rang(T ). Indeed, for b1 = 0, b2 = 0, and b3 = 0, we have
b4 = (3(0)− (0) + 3(0))/2 = 0.

2. Let u :=
(
u1 u2 u3 u4

)T ∈ rang(T ) be any vector. Then, by definition u4 =

(3u1 − u2 + 3u3)/2. For arbitrary c ∈ R, the vector cu :=
(
cu1 cu2 cu3 cu4

)T
belongs to rang(T ) since we have cu4 = (3(cu1)− (cu2) + 3(cu3))/2, and thus, the
vector cu satisfies (2).

3. Let u =
(
u1 u2 u3 u4

)T
,v =

(
v1 v2 v3 v4

)T ∈ rang(T ) be arbitrary. Then
u4 = (3u1 − u2 + 3u3)/2 and v4 = (3v1 − v2 + 3v3)/2. Note that

u + v =
(
u1 + v1 u2 + v2 u3 + v3 u4 + v4

)T
.

Moreover,

u4+v4 = (3u1−u2+3u3)/2+(3v1−v2+3v3)/2 = (3(u1+v1)−(u2+v2)+3(u3+v3))/2.

Therefore, u + v vector satisfies (2) and thus, u + v ∈ rang(T ).

(i) Find the dim(rang(T )) following a similar procedure as in part (f).

Ans. Note that the range space of T can be expressed as

rang(T ) =




b1
b2
b3

(3b1 − b2 + 3b3)/2

 ∈ R4

∣∣∣∣∣ b1, b2, b3 ∈ R are arbitrary

 .

Since b1, b2, b3 are arbitrary, any vector in rang(T ) can be expressed as
b1
b2
b3
b4

 =


b1
b2
b3

(3b1 − b2 + 3b3)/2

 = b1


1
0
0

3/2

+ b2


0
1
0
−1/2

+ b3


0
0
1

3/2

 .

Therefore,

rang(T ) = span {u,v,w} , where u :=


1
0
0

3/2

 , v :=


0
1
0
−1/2

 and w :=


0
0
1

3/2

 .

7



It only remains to verify that {u,v,w} are linearly independent. Consider the system

c1u + c2v + c3w = 0 or equivalently


1 0 0
0 1 0
0 0 1

3/2 −1/2 3/2


c1
c2
c3

 =


0
0
0
0

 .

Row reduction of the coefficient matrix renders
1 0 0
0 1 0
0 0 1

3/2 −1/2 3/2

 ∼


1 0 0
0 1 0
0 0 1
0 −1/2 3/2

 (R4 −
3

2
R1)

∼


1 0 0
0 1 0
0 0 1
0 0 3/2

 (R4 +
1

2
R2)

∼


1 0 0
0 1 0
0 0 1
0 0 0

 (R4 −
3

2
R3).

Therefore, we have c1 = 0, c2 = 0 and c3 = 0. Thus, {u,v,w} is linearly independent.
As rang(T ) = span{u,v,w}. Therefore, {u,v,w} forms a basis of rang(T ). Hence,
dim(rang(T )) = 3.

(j) Verify that dim(rang(T )) + dim(ker(T )) = dim(R3)? What do you conclude from this
for a general linear transformation T2 : Rn → Rm, for m,n ∈ N?

Ans. It is evident that dim(rang(T )) + dim(ker(T )) = 0 + 3 = dim(R3) = 3. It can be
concluded that dim(rang(T )) + dim(ker(T )) = n = dim(Rn). This is, in fact, the
so-called Rank-Nullity Theorem.

”Every stumble is not a fall, and every fall does not mean failure.” ∼ Oprah Winfrey
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