National University of Technology, Islamabad
Assignment II (Linear Algebra and ODE), Fall 2019
Due Date: Oct. 18, 2019
Q. 1 Consider the matrix $\left[\begin{array}{lll}1 & 3 & 2 \\ a & 6 & 2 \\ 0 & 9 & 5\end{array}\right]$ where a is a real number. For what value of a is the matrix singular?
Q. 2 Find the inverse of $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ \frac{1}{4} & 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1\end{array}\right]$.
Q. 3 Recall that a set \mathcal{B} of vectors of a subspace \mathcal{S} of \mathbb{R}^{n} is called a basis of \mathcal{S} if \mathcal{B} is linearly independent and it spans \mathcal{S}. Let $\mathbf{u}=\left[\begin{array}{ccc}2 & 0 & -1\end{array}\right]^{T}, \mathbf{v}=\left[\begin{array}{lll}3 & 1 & 0\end{array}\right]^{T}$, and $\mathbf{w}=\left[\begin{array}{lll}1 & -1 & c\end{array}\right]^{T}$ where $c \in \mathbb{R}$. Find the value(s) of c such that the set $\mathcal{B}:=\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ form a basis of \mathbb{R}^{3}.
Q. 4 Define a transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ by

$$
T(\mathbf{x})=T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right):=\left(\begin{array}{c}
x_{1}-x_{3} \\
x_{1}+x_{2} \\
x_{3}-x_{2} \\
x_{1}-2 x_{2}
\end{array}\right), \quad \text { for all } \mathbf{x} \in \mathbb{R}^{3} .
$$

(a) Find $T(\mathbf{x})$ for $\mathbf{x}^{T}:=\left(\begin{array}{lll}1 & -2 & 3\end{array}\right)$.
(b) Show that T is a linear transformation.
(c) Find the matrix A of transformation T such that $T(\mathbf{x})=A \mathbf{x}$.
(d) The Kernel of aforementioned $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$, denoted by $\operatorname{ker}(T)$, is defined to be the set of all x in \mathbb{R}^{3} such that $T \mathbf{x}=\mathbf{0}$. It is also called the null space of T. Find $\operatorname{ker}(T)$.
(e) Show that the $\operatorname{ker}(T)$ derived in part (d) is a subspace of \mathbb{R}^{3}.
(f) Find $\operatorname{dim}(\operatorname{ker}(T))$, i.e., the dimension of subspace $\operatorname{ker}(T)$. (Hint: First express $\operatorname{ker}(T):=$ $\operatorname{span}\left\{\mathbf{v}_{1}, \cdots\right\}$ for some vector(s), then show that the vector(s) \mathbf{v}_{1}, \cdots are linearly independent.)
(g) The Range of aforementioned $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$, denoted by $\operatorname{rang}(T)$, is the set of all $\mathbf{b} \in \mathbb{R}^{4}$ such that $T(\mathbf{x})=\mathbf{b}$ for some $\mathbf{x} \in \mathbb{R}^{3}$. Find $\operatorname{rang}(T)$.
(h) Show that $\operatorname{rang}(T)$ is a subspace of \mathbb{R}^{4}.
(i) Find the $\operatorname{dim}(\operatorname{rang}(T))$ following a similar procedure as in part (f).
(j) Verify that $\operatorname{dim}(\operatorname{rang}(T))+\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}\left(\mathbb{R}^{3}\right)$? What do you conclude from this for a general linear transformation $T_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, for $m, n \in \mathbb{N}$?
"Every stumble is not a fall, and every fall does not mean failure." ~ Oprah Winfrey

