

NATIONAL UNIVERSITY OF TECHNOLOGY, ISLAMABAD ASSIGNMENT II (LINEAR ALGEBRA AND ODE), FALL 2019 DUE DATE: OCT. 18, 2019

Q.1 Consider the matrix $\begin{bmatrix} 1 & 3 & 2 \\ a & 6 & 2 \\ 0 & 9 & 5 \end{bmatrix}$ where *a* is a real number. For what value of *a* is the matrix singular?

- Q.2 Find the inverse of $\begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{4} & 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix}.$
- Q.3 Recall that a set \mathcal{B} of vectors of a subspace \mathcal{S} of \mathbb{R}^n is called a *basis* of \mathcal{S} if \mathcal{B} is linearly independent and it spans \mathcal{S} . Let $\mathbf{u} = \begin{bmatrix} 2 & 0 & -1 \end{bmatrix}^T$, $\mathbf{v} = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix}^T$, and $\mathbf{w} = \begin{bmatrix} 1 & -1 & c \end{bmatrix}^T$ where $c \in \mathbb{R}$. Find the value(s) of c such that the set $\mathcal{B} := \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ form a basis of \mathbb{R}^3 .
- Q.4 Define a transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ by

$$T(\mathbf{x}) = T\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix} := \begin{pmatrix} x_1 - x_3\\x_1 + x_2\\x_3 - x_2\\x_1 - 2x_2 \end{pmatrix}, \quad \text{for all } \mathbf{x} \in \mathbb{R}^3.$$

- (a) Find $T(\mathbf{x})$ for $\mathbf{x}^T := \begin{pmatrix} 1 & -2 & 3 \end{pmatrix}$.
- (b) Show that T is a linear transformation.
- (c) Find the matrix A of transformation T such that $T(\mathbf{x}) = A\mathbf{x}$.
- (d) The KERNEL of aforementioned $T : \mathbb{R}^3 \to \mathbb{R}^4$, denoted by ker(T), is defined to be the set of all x in \mathbb{R}^3 such that $T\mathbf{x} = \mathbf{0}$. It is also called the *null space* of T. Find ker(T).
- (e) Show that the ker(T) derived in part (d) is a subspace of \mathbb{R}^3 .
- (f) Find dim(ker(T)), i.e., the dimension of subspace ker(T). (*Hint: First express* ker(T) := $\operatorname{span}\{\mathbf{v}_1,\cdots\}$ for some vector(s), then show that the vector(s) \mathbf{v}_1,\cdots are linearly independent.)
- (g) The RANGE of aforementioned $T : \mathbb{R}^3 \to \mathbb{R}^4$, denoted by rang(T), is the set of all $\mathbf{b} \in \mathbb{R}^4$ such that $T(\mathbf{x}) = \mathbf{b}$ for some $\mathbf{x} \in \mathbb{R}^3$. Find rang(T).
- (h) Show that $\operatorname{rang}(T)$ is a subspace of \mathbb{R}^4 .
- (i) Find the $\dim(\operatorname{rang}(T))$ following a similar procedure as in part (f).
- (j) Verify that $\dim(\operatorname{rang}(T)) + \dim(\ker(T)) = \dim(\mathbb{R}^3)$? What do you conclude from this for a general linear transformation $T_2 : \mathbb{R}^n \to \mathbb{R}^m$, for $m, n \in \mathbb{N}$?

[&]quot;Every stumble is not a fall, and every fall does not mean failure." \sim Oprah Winfrey