# National University of Technology, Islamabad 

Assignment III (Calculus II), Spring 2019
Due Date: May 10, 2019
Q. 1 Show that the limit does not exist by considering the limits as $(x, y) \rightarrow(0,0)$ along the coordinate axes.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)}{\left(x^{2}+y^{2}\right)}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{\cos (x y)}{\left(x^{2}+y^{2}\right)}$.
Q. 2 Show that the value of $\frac{x^{3} y}{2 x^{6}+y^{2}}$ approaches 0 as $(x, y) \rightarrow(0,0)$ along any straight line $y=m x$, or along any parabola $y=k x^{2}$ for arbitrary $m, k \in \mathbb{R}$. Also, show that $\frac{x^{3} y}{2 x^{6}+y^{2}}$ does not exist by letting $(x, y) \rightarrow(0,0)$ along the curve $y=x^{3}$.
Q. 3 According to the ideal gas law, the pressure, temperature, and volume of a gas are related by $P=k T / V$, where $k$ is a constant of proportionality. Suppose that $V$ is measured in cubic inches $\left(i n^{3}\right), T$ is measured in Kelvins ( $K$ ), and that for a certain gas the constant of proportionality is $k=10 \mathrm{in} . l \mathrm{lb} / \mathrm{K}$.
(a) Find the instantaneous rate of change of pressure with respect to temperature if the temperature is 80 K and the volume remains fixed at $50 \mathrm{in}^{3}$.
(b) Find the instantaneous rate of change of volume with respect to pressure if the volume is $50 \mathrm{in}^{3}$ and the temperature remains fixed at 80 K .
In Q. $4-7$ use an appropriate form of the chain rule to find $\frac{d w}{d t}$ when:
Q. $4 w=5 x^{2} y^{3} z^{4}, \quad x=t^{2}, \quad y=t^{3}, \quad z=t^{5}$.
Q. $5 w=\ln \left(3 x^{2}-2 y+4 z^{3}\right), \quad x=t^{1 / 2}, \quad y=t^{2 / 3}, \quad z=t^{-2}$.
Q. $6 w=5 \cos (x y)-\sin (x z), \quad x=1 / t, \quad y=t, \quad z=t^{3}$.
Q. $7 w=\sqrt{1+x-2 x y z^{4}}, \quad x=\ln t, \quad y=t, \quad z=4 t$.
Q. 8 Let $f$ be a differentiable function, and let $w=f(\rho)$, where $\rho=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$. Show that

$$
\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}=\left(\frac{d w}{d \rho}\right)^{2} .
$$

Q. 9 Suppose that $w=f(x, y, z)$ is differentiable at the point $(1,0,2)$ with $f_{x}(1,0,2)=1$, $f_{y}(1,0,2)=2$, and $f_{z}(1,0,2)=3$. If $x=t, y=\sin (\pi t)$, and $z=t^{2}+1$, find $d w / d t$ when $t=1$.
Q. 10 Use the chain rule to find the values of $\left.\frac{\partial z}{\partial r}\right|_{r=2, \theta=\pi / 6}$ and $\left.\frac{\partial z}{\partial \theta}\right|_{r=2, \theta=\pi / 6}$ if $z=x y e^{x / y}$ where $x=r \cos \theta$ and $y=r \sin \theta$.

