

## NATIONAL UNIVERSITY OF TECHNOLOGY, ISLAMABAD Assignment III (Calculus II), Spring 2019 Due Date: May 10, 2019

Q.1 Show that the limit does not exist by considering the limits as  $(x, y) \rightarrow (0, 0)$  along the coordinate axes.

(a) 
$$\lim_{(x,y)\to(0,0)} \frac{(x-y)}{(x^2+y^2)}$$
 (b)  $\lim_{(x,y)\to(0,0)} \frac{\cos(xy)}{(x^2+y^2)}$ 

- Q.2 Show that the value of  $\frac{x^3y}{2x^6+y^2}$  approaches 0 as  $(x,y) \to (0,0)$  along any straight line y = mx, or along any parabola  $y = kx^2$  for arbitrary  $m, k \in \mathbb{R}$ . Also, show that  $\frac{x^3y}{2x^6+y^2}$  does not exist by letting  $(x,y) \to (0,0)$  along the curve  $y = x^3$ .
- Q.3 According to the ideal gas law, the pressure, temperature, and volume of a gas are related by P = kT/V, where k is a constant of proportionality. Suppose that V is measured in cubic inches  $(in^3)$ , T is measured in Kelvins (K), and that for a certain gas the constant of proportionality is k = 10in.lb/K.

(a) Find the instantaneous rate of change of pressure with respect to temperature if the temperature is 80K and the volume remains fixed at  $50in^3$ .

(b) Find the instantaneous rate of change of volume with respect to pressure if the volume is  $50in^3$  and the temperature remains fixed at 80K.

In Q. 4 - 7 use an appropriate form of the chain rule to find  $\frac{dw}{dt}$  when: Q.4  $w = 5x^2y^3z^4$ ,  $x = t^2$ ,  $y = t^3$ ,  $z = t^5$ . Q.5  $w = \ln(3x^2 - 2y + 4z^3)$ ,  $x = t^{1/2}$ ,  $y = t^{2/3}$ ,  $z = t^{-2}$ . Q.6  $w = 5\cos(xy) - \sin(xz)$ , x = 1/t, y = t,  $z = t^3$ .

Q.7 
$$w = \sqrt{1 + x - 2xyz^4}$$
,  $x = \ln t$ ,  $y = t$ ,  $z = 4t$ .

Q.8 Let f be a differentiable function, and let  $w = f(\rho)$ , where  $\rho = (x^2 + y^2 + z^2)^{1/2}$ . Show that

$$\left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial z}\right)^2 = \left(\frac{dw}{d\rho}\right)^2.$$

- Q.9 Suppose that w = f(x, y, z) is differentiable at the point (1, 0, 2) with  $f_x(1, 0, 2) = 1$ ,  $f_y(1, 0, 2) = 2$ , and  $f_z(1, 0, 2) = 3$ . If x = t,  $y = \sin(\pi t)$ , and  $z = t^2 + 1$ , find dw/dt when t = 1.
- Q.10 Use the chain rule to find the values of  $\frac{\partial z}{\partial r}\Big|_{r=2,\theta=\pi/6}$  and  $\frac{\partial z}{\partial \theta}\Big|_{r=2,\theta=\pi/6}$  if  $z = xye^{x/y}$  where  $x = r\cos\theta$  and  $y = r\sin\theta$ .