National University of Technology, Islamabad

Assignment V (Calculus II), Spring 2019

Solution Key

Q. 1 Here, the constraint is $g(x, y)=4 x^{2}+y^{2}-4=0$. Setting $\nabla f(x, y)=\lambda \nabla g(x, y)$, we obtain

$$
y \mathbf{i}+x \mathbf{j}=\lambda(8 x \mathbf{i}+2 y \mathbf{j})
$$

Comparing the components on both sides of the above equation and together with the constraint, we obtain the system

$$
y=8 x \lambda, \quad x=2 y \lambda, \quad 4 x^{2}+y^{2}=4 .
$$

There are many ways to solve above system for x, y and λ. One way is by first eliminating y from $x=2 y \lambda$ as

$$
x=2 y \lambda=2(8 x \lambda) \lambda=16 x \lambda^{2} \Longrightarrow x\left(1-16 \lambda^{2}\right)=0 \Longrightarrow x=0 \text { or } \lambda= \pm 1 / 4
$$

If $x=0$, then $4 x^{2}+y^{2}=4$ furnishes $y= \pm 2$. Thus, the points $(0, \pm 2)$ are possibilities for extrema of $f(x, y)$. If $\lambda= \pm 1 / 4$, then $y=8 x(\pm 1 / 4)= \pm 2 x$. Again using fact that $4 x^{2}+y^{2}=4$ we get

$$
4 x^{2}+4 x^{2}=4 \Longrightarrow 8 x^{2}=4 \Longrightarrow x= \pm 1 / \sqrt{2} .
$$

The corresponding y-values are therefore $y= \pm 2 x= \pm 2 / \sqrt{2}= \pm \sqrt{2}$. This gives us the points $(\sqrt{2} / 2, \pm \sqrt{2})$ and $(-\sqrt{2} / 2, \pm \sqrt{2})$. The values of f at each of the points we have found are
$f(0,2)=0=f(0,-2), \quad f\left(\frac{\sqrt{2}}{2}, \sqrt{2}\right)=1=f\left(-\frac{\sqrt{2}}{2},-\sqrt{2}\right), \quad f\left(-\frac{\sqrt{2}}{2}, \sqrt{2}\right)=-1=f\left(\frac{\sqrt{2}}{2},-\sqrt{2}\right)$.
It follows that $f(x, y)$ takes on a maximum value 1 at either $\left(\frac{\sqrt{2}}{2}, \sqrt{2}\right)$ or $\left(-\frac{\sqrt{2}}{2},-\sqrt{2}\right)$ and minimum value 1 at $\left(-\frac{\sqrt{2}}{2}, \sqrt{2}\right)$ or $\left(\frac{\sqrt{2}}{2},-\sqrt{2}\right)$.
Q. 2 Let $2 x, 2 y$, and $2 z$ be the length (from $-x$ to x along x-axis), width (from $-y$ to y along y-axis), and height (from $-z$ to z along z-axis) of the box. We wish to maximize $V=$ $f(x, y, z)=8 x y z$ subject to the constraint $g(x, y, z)=16 x^{2}+4 y^{2}+9 z^{2}-144=0$. Let us begin by considering $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$, or

$$
8 y z \mathbf{i}+8 x z \mathbf{j}+8 x y \mathbf{k}=\lambda(32 x \mathbf{i}+8 y \mathbf{j}+18 z \mathbf{k}) .
$$

Comparing the components on both sides of the above equation, together with $g(x, y, z)=0$ gives us the system of four equations

$$
8 y z=32 x \lambda, \quad 8 x z=8 y \lambda, \quad 8 x y=18 z \lambda, \quad 16 x^{2}+4 y^{2}+9 z^{2}=144 .
$$

Multiplying the first equations by x, the second by y, and the third by z and adding gives us

$$
24 x y z=32 x^{2} \lambda+8 y^{2} \lambda+18 z^{2} \lambda=2 \lambda\left(16 x^{2}+4 y^{2}+9 z^{2}\right)=2(144) \lambda \Longrightarrow x y z=12 \lambda
$$

The last equation may be used to find x, y, and z. For example, multiplying both sides of the equation $8 y z=32 x \lambda$ by x, we obtain

$$
8 x y z=32 x^{2} \lambda \Longrightarrow 8(12) \lambda=32 x^{2} \lambda \Longrightarrow 96 \lambda-32 x^{2} \lambda=0 \Longrightarrow \lambda\left(3-x^{2}\right)=0
$$

Consequently, either $\lambda=0$ or $x=\sqrt{3}$ (remember that $x>0$ is a length). Moreover, we may reject $\lambda=0$ since in this case $x y z=0$ and hence $V=8 x y z=0$. Thus the only possibility for x is $\sqrt{3}$.
Similarly, multiplying both sides of the equation $8 x z=8 y \lambda$ by y leads to

$$
8 x y z=8 y^{2} \lambda \Longrightarrow 8(12 \lambda)=8 y^{2} \lambda \Longrightarrow \lambda\left(12-y^{2}\right)=0 \Longrightarrow y=\sqrt{12}=2 \sqrt{3}
$$

Finally, multiplying the equation $8 x y=18 z \lambda$ by z and using the same technique results in $z=4 / \sqrt{3}$. It follows that the desired volume is

$$
V=8 x y z=8(\sqrt{3})(2 / \sqrt{3})(4 / \sqrt{3})=64 \sqrt{3}
$$

Q. 3 The objective function (square of the distance function) here is

$$
f(x, y, z)=(x-1)^{2}+(y+1)^{2}+(z-1)^{2}
$$

and the constraint is $g(x, y, z)=4 x+3 y+z-2=0$. For Lagrange multipliers, we set the equation

$$
\nabla f=\lambda \nabla g \Longleftrightarrow 2(x-1) \mathbf{i}+2(y+1) \mathbf{j}+2(z-1) \mathbf{k}=\lambda(4 \mathbf{i}+3 \mathbf{j}+\mathbf{k})
$$

This together with the constraint gives the equations

$$
2(x-1)=4 \lambda, \quad 2(y-1)=3 \lambda, \quad 2(z-1)=\lambda, \quad 4 x+3 y+z=2
$$

Substituting $\lambda=2 z-2$ in the first, second, and the last equation above, we get

$$
x=2 \lambda+1=4 z-4+1=4 z-3, \quad y=\frac{3}{2} \lambda-1=3 z-3+1=3 z-4
$$

and

$$
2=4 x+3 y+z=4(4 z-3)+3(3 z-4)+z=26 z-24 \Longleftrightarrow 26 z=26 \Longleftrightarrow z=1
$$

Therefore, $x=4(1)-3=1, y=3(1)-4=-1, z=1$. Thus the point is $(1,-1,1)$. That was expected because point $(1,-1,1)$ lies on the plane $4 x+3 y+z=2$.
Q. 4 Let $\mathbf{v}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ be the required vector such that $|\mathbf{v}|=5$, i.e., $x^{2}+y^{2}+z^{2}=25$ and $f(x, y, z)=x+y+z$ is largest (f is the objective function here). The problem at hand is as follows. Maximize the function $f(x, y, z)=x+y+z$ subject to the constrain $g(x, y, z)=x^{2}+y^{2}+z^{2}-25$. Using the method of Lagrange multipliers, we set $\nabla f=\lambda \nabla g$, i.e.,

$$
\mathbf{i}+\mathbf{j}+\mathbf{k}=\lambda(2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}) \Longleftrightarrow 1=2 x \lambda, \quad 1=2 y \lambda, \quad 1=2 z \lambda .
$$

This implies

$$
\lambda=\frac{1}{2 x}=\frac{1}{2 y}=\frac{1}{2 z} \Longleftrightarrow y=x \quad \text { and } \quad z=x .
$$

With this information at hand, we have from the constraint equation

$$
25=x^{2}+y^{2}+z^{2}=x^{2}+x^{2}+x^{2}=3 x^{2} \Longleftrightarrow x= \pm \sqrt{25 / 3}= \pm 5 / \sqrt{3}=y=z .
$$

Since

$$
f\left(\frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}}\right)=\frac{5}{\sqrt{3}} \quad \text { and } \quad f\left(-\frac{5}{\sqrt{3}},-\frac{5}{\sqrt{3}},-\frac{5}{\sqrt{3}}\right)=-\frac{5}{\sqrt{3}},
$$

therefore, the required vector is $\mathbf{v}=\frac{5}{\sqrt{3}}(\mathbf{i}+\mathbf{j}+\mathbf{k})$.
Q. 5 The ant is constrained to traverse in a circle of radius 5. Therefore, assuming the center of the circle to be the origin, the constraint equation is $x^{2}+y^{2}=25$. Thus, the objective function is $T(x, y)=4 x^{2}-4 x y$ and the constraint function is $g(x, y)=x^{2}+y^{2}-25$. By using method of Lagrange multipliers, we set $\nabla T=\lambda \nabla g$, i.e.,

$$
(8 x-4 y) \mathbf{i}-4 x \mathbf{j}=\lambda(2 x \mathbf{i}+2 y \mathbf{j}) .
$$

In components, we have $8 x-4 y=2 x \lambda$ and $-4 x+2 y=2 y \lambda$. Note that x and y cannot be zero, because if $x=0$ then $y=0$ and conversely; however, $x^{2}+y^{2}=25$. Therefore, both x and y are non-zero. Thus, $\lambda=(4 x-2 y) / x$ and $\lambda=(-2 x+y) / y$ from the component equations above. So

$$
(4 x-2 y) / x=(-2 x+y) / y \quad \Longleftrightarrow \quad 2 x^{2}+3 x y-2 y^{2}=0 \quad \Longleftrightarrow \quad(2 x-y)(x+2 y)=0
$$

Therefore, either $y=2 x$ or $x=-2 y$. If $y=2 x$ then $x^{2}+(2 x)^{2}=25$, i.e., $x= \pm \sqrt{5}$. If $x=-2 y$ then $(-2 y)^{2}+y^{2}=25$, i.e., $y= \pm \sqrt{5}$. Therefore, the possible points of extrema are $(-\sqrt{5},-2 \sqrt{5}),(\sqrt{5}, 2 \sqrt{5}),(-2 \sqrt{5}, \sqrt{5})$ and $(2 \sqrt{5},-\sqrt{5})$. Since

$$
T(-\sqrt{5},-2 \sqrt{5})=0=T(\sqrt{5}, 2 \sqrt{5}) \quad \text { and } \quad T(-2 \sqrt{5}, \sqrt{5})=125=T(2 \sqrt{5},-\sqrt{5}) .
$$

The highest temperature is 125 and the lowest temperature is 0 subject to the constraint $x^{2}+y^{2}=25$.

"The two most important days in your life are the day you are born and the day you find out why." - Mark Twain

