National University of Technology, Islamabad
Assignment VI (Calculus II), Spring 2019

Solution Key

Q. 1
a. $\int_{0}^{\pi / 2} \int_{0}^{1} y \sin x d y d x=\int_{0}^{\pi / 2}\left[\frac{y^{2}}{2} \sin x\right]_{0}^{1} d x=\int_{0}^{\pi / 2} \frac{1}{2} \sin x=\left[-\frac{1}{2} \cos x\right]_{0}^{\pi / 2}=\frac{1}{2}$.
b. $\int_{0}^{2} \int_{x^{2}}^{x} y^{2} x d y d x=\int_{0}^{2}\left[\frac{y^{3} x}{3}\right]_{x^{2}}^{x} d x=\int_{0}^{2}\left[\frac{x^{4}}{3}-\frac{x^{7}}{3}\right] d x=\left[\frac{x^{5}}{15}-\frac{x^{8}}{24}\right]_{0}^{2}=-\frac{128}{15}$.
c. $\int_{\pi / 2}^{\pi} \int_{0}^{x^{2}} \frac{1}{x} \cos \left(\frac{y}{x}\right) d y d x=\int_{\pi / 2}^{\pi}\left[\frac{1}{x} \frac{\sin \left(\frac{y}{x}\right)}{\frac{1}{x}}\right]_{0}^{x^{2}} d x=\int_{\pi / 2}^{\pi} \sin x d x=[-\cos x]_{\pi / 2}^{\pi}=1$.
Q. 2 The plane $3 x+2 y+z=12$ is a function $z=12-3 x-2 y$, so the volume of the solid is

$$
\begin{aligned}
V & =\iint_{R} z d A=\int_{-2}^{3} \int_{0}^{1}(12-3 x-2 y) d x d y=\int_{-2}^{3}\left[12 x-\frac{3}{2} x^{2}-2 x y\right]_{0}^{1} d y \\
& =\int_{-2}^{3}\left(\frac{21}{2}-2 y\right) d y=\left[\frac{21}{2} y-y^{2}\right]_{-2}^{3}=\frac{95}{2}
\end{aligned}
$$

Q. 3 The graphs of $y=\sqrt{x}$ and $y=\sqrt{3 x-18}$ are the top halves of the parabolas $y^{2}=x$ and $y^{2}=3 x-18$. The region R is sketched in Figure 1. If we wish to use vertical slicing then

Figure 1: The region of integration in $Q .3$.
it is necessary to employ two iterated integrals, because if $0 \leq x \leq 6$, the lower boundary is the graph of $y=0$, whereas if $6 \leq x \leq 9$, the lower boundary is the graph of $y=\sqrt{3 x-18}$. Let R_{1} denote the part of the region R that lies between $x=0$ and $x=6$, and let R_{2} denote the part between $x=6$ and $x=9$ then

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A \\
& =\int_{0}^{6} \int_{0}^{\sqrt{x}} f(x, y) d y d x+\int_{6}^{9} \int_{\sqrt{3 x-18}}^{\sqrt{x}} f(x, y) d y d x .
\end{aligned}
$$

If we wish to use horizontal slicing then we must solve each of the given equations for x in terms of y, obtaining

$$
x=y^{2} \quad \text { and } \quad x=\frac{1}{3} y^{2}+6 .
$$

Only one iterated integral is required in this case and that is

$$
\iint_{R} f(x, y) d A=\int_{0}^{3} \int_{y^{2}}^{\frac{1}{3} y^{2}+6} f(x, y) d x d y
$$

Q. 4 The region of integration D is the region below the line $x+3 y=7$ or equivalently $y=$ $(7-x) / 3$ and above the line $y=1$ for $1 \leq x \leq 4$ (see, Figure 2). Thus,

Figure 2: The region of integration in $Q .4$.

$$
\begin{aligned}
V & =\int_{1}^{4} \int_{1}^{(7-x) / 3} x y d y d x=\int_{1}^{4}\left[\frac{x y}{2}\right]_{1}^{(7-x) / 3} d x=\int_{1}^{4} \frac{1}{2} x\left[\frac{1}{9}(7-x)^{2}-1\right] d x \\
& =\frac{1}{18} \int_{1}^{4}\left[x^{3}-14 x^{2}+40 x\right] d x=\frac{1}{18}\left[\frac{x^{4}}{4}-\frac{14 x^{3}}{3}+20 x^{2}\right]_{1}^{4}=\frac{1}{18}\left(\frac{256}{3}-\frac{187}{12}\right)=\frac{31}{8} .
\end{aligned}
$$

Q. 5 The region R of the integration is illustrated in Figure 3. The left-hand and right-hand boundaries are the graphs of $x=\sqrt{y}$ and $x=2$, respectively, and $0 \leq y \leq 4$. Note that the region R has the lower and upper boundaries at $y=0$ and $y=\overline{x^{2}}$, respectively, and $0 \leq x \leq 2$. Hence,

$$
\begin{aligned}
\int_{0}^{4} \int_{\sqrt{y}}^{2} y \cos \left(x^{5}\right) d x d y & =\iint_{R} y \cos \left(x^{5}\right) d A=\int_{0}^{2} \int_{0}^{x^{2}} y \cos \left(x^{5}\right) d y d x=\int_{0}^{2}\left[\frac{y^{2}}{2} \cos \left(x^{5}\right)\right]_{0}^{x^{2}} d x \\
& =\int_{0}^{2} \frac{x^{4}}{2} \cos \left(x^{5}\right) d x=\frac{1}{10} \int_{0}^{2} \cos \left(x^{5}\right)\left[5 x^{4} d x\right] \\
& =\frac{1}{10}\left[\sin \left(x^{5}\right)\right]_{0}^{2}=\frac{1}{10} \sin (32)
\end{aligned}
$$

Figure 3: The region of integration in $Q .5$.
Q. 6 The region of integration is bounded from above by the line $y=8$, from below by x-axis, from left by the curve $x=y^{1 / 3}$, and from right by the line $x=2$ (see, Figure 4). $\int_{0}^{8} \int_{y^{1 / 3}}^{2} \sqrt{x^{4}+1} d x d y=\int_{0}^{2}\left(\int_{0}^{x^{3}} \sqrt{x^{4}+1} d y\right) d x=\int_{0}^{2} x^{3} \sqrt{x^{4}+1} d x=\left.\frac{2}{12}\left(x^{4}+1\right)^{3 / 2}\right|_{0} ^{2}$.

Figure 4: The region of integration in Q.6.
Therefore, $\int_{0}^{8} \int_{y^{1 / 3}}^{2} \sqrt{x^{4}+1} d x d y=\frac{1}{6}\left[\left(2^{4}+1\right)^{3 / 2}-(0+1)^{3 / 2}\right]=\frac{1}{6}\left(17^{3 / 2}-1\right)$.

