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Q.2 The plane 3z + 2y + z = 12 is a function z = 12 — 3z — 2y, so the volume of the solid is
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Q.3 The graphs of y = /= and y = \/3x — 18 are the top halves of the parabolas y?> = z and
y? = 3z — 18. The region R is sketched in Figure 1. If we wish to use vertical slicing then
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Figure 1: The region of integration in Q.3.

it is necessary to employ two iterated integrals, because if 0 < x < 6, the lower boundary is
the graph of y = 0, whereas if 6 < z < 9, the lower boundary is the graph of y = +/3xz — 18.
Let R; denote the part of the region R that lies between z = 0 and = = 6, and let R denote
the part between x = 6 and x = 9 then
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If we wish to use horizontal slicing then we must solve each of the given equations for x in
terms of y, obtaining
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r=1> and m:§y2+6.

Only one iterated integral is required in this case and that is
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Q.4 The region of integration D is the region below the line x + 3y = 7 or equivalently y =
(7 —x)/3 and above the line y = 1 for 1 < x < 4 (see, Figure 2). Thus,
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Figure 2: The region of integration in Q.4.
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Q.5 The region R of the integration is illustrated in Figure 3. The left-hand and right-hand
boundaries are the graphs of x = |/y and = = 2, respectively, and 0 < y < 4. Note that
the region R has the lower and upper boundaries at y = 0 and y = 22, respectively, and
0 <z < 2. Hence,
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Figure 3: The region of integration in @Q.5.

Q.6 The region of integration is bounded from above by the line y = 8, from below by z—axis,
from left by the curve = y'/?, and from right by the line © = 2 (see, Figure 4).

8 2 2 a3 2
2 2
/ / Vat + ldedy = / (/ Vat+ 1dy> dr = / 3\ xd + lde = ﬁ(x4 +1)3/2 K
0 Jyl/3 0 0 0

Figure 4: The region of integration in Q).6.
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“Shine like the whole universe is yours.” — Rumi



