Q. 1 Evaluate the following iterated integrals:
a. $\int_{0}^{\pi / 2} \int_{0}^{1} y \sin x d y d x$
b. $\int_{0}^{2} \int_{x^{2}}^{x} y^{2} x d y d x$
c. $\int_{\pi / 2}^{\pi} \int_{0}^{x^{2}} \frac{1}{x} \cos \left(\frac{y}{x}\right) d y d x$
Q. 2 Find the volume of the solid that lies under the plane $3 x+2 y+z=12$ and above the rectangle $R=\{(x, y) \quad \mid \quad 0 \leq x \leq 1, \quad-2 \leq y \leq 3\}$.
Q. 3 Let R be the region bounded by the graphs of the equations $y=\sqrt{x}, y=\sqrt{3 x-18}$ and $y=0$. If f is continuous on R, express the double integral of f over R in terms of iterated integrals using (a) vertical slicing and (b) horizontal slicing.
Q. 4 Find the volume of the solid that lies under the surface $z=x y$ and above the triangle with vertices $(1,1),(4,1)$, and $(1,2)$.
Q. 5 Reverse the order of integration in $\int_{0}^{4} \int_{\sqrt{y}}^{2} y \cos \left(x^{5}\right) d x d y$ and evaluate the resulting integral.
Q. 6 Integral $\int_{0}^{8} \int_{y^{1 / 3}}^{2} \sqrt{x^{4}+1} d x d y$ has no closed formula with elementary functions. Switching the order of integration, evaluate this integral.
"Shine like the whole universe is yours."- Rumi

