National University of Technology, Islamabad
Assignment II (Calculus II), Spring 2019
Due Date: April 30, 2019
Q. 1 Find the distance between the line L_{1} through the points $A(1,0,-1)$ and $B(-1,1,0)$ and the line L_{2} through the points $C(3,1,-1)$ and $D(4,5,-2)$.
(Hint: The distance is to be measured along the line perpendicular to the two lines.)
Q. 2 Find the point in which the line through the origin perpendicular to the plane $2 x-y-z=4$ meets the plane $3 x-5 y+2 z=6$.
Q. 3 Show that the line in which the planes $x+2 y-2 z=5$ and $5 x-2 y-z=0$ intersect is parallel to the line $\left\{\begin{array}{l}x=-3+2 t \\ y=3 t \\ z=1+4 t\end{array}\right.$.
Q. 4 The planes $3 x+6 z=1$ and $2 x+2 y-z=3$ intersect in a line. Show that the planes are orthogonal. Also find parametric equations for the line of intersection.
Q. 5 A particle moves around the ellipse $(y / 3)^{2}+(z / 2)^{2}=1$ in the $y z-$ plane in such a way that its position at time t is $\mathbf{r}(t)=(3 \cos t) \mathbf{j}+(2 \sin t) \mathbf{k}$. Find the maximum and minimum values of the speed $|\mathbf{v}|$ and the magnitude of acceleration $|\mathbf{a}|$.
(Hint: Find the extreme values of $|\mathbf{v}|^{2}$ and $|\mathbf{a}|^{2}$ and take square roots at the end).
Q. 6 Find the point on the curve $\mathbf{r}(t)=(5 \sin t) \mathbf{i}+(5 \cos t) \mathbf{j}+(12 t) \mathbf{k}$ at a distance 26π units along the curve from the origin in the direction of increasing arc length.
Q. 7 Find the length of the curve $\mathbf{r}(t)=(\sqrt{2} t) \mathbf{i}+(\sqrt{2} t) \mathbf{j}+\left(1-t^{2}\right) \mathbf{k}$ from $(0,0,1)$ to $(\sqrt{2}, \sqrt{2}, 0)$.
Q. 8 Find the tangent vector \mathbf{T}, normal vector \mathbf{N} and curvature κ for the plane curve $\mathbf{r}(t)=$ $(t) \mathbf{i}+(\ln \cos t) \mathbf{j}$ where $-\pi / 2<t<\pi / 2$.

[^0]
[^0]: "Every stumble is not a fall, and every fall does not mean failure." ~ Oprah Winfrey

