

Q.1 Find the distance between the line L_1 through the points A(1, 0, -1) and B(-1, 1, 0) and the line L_2 through the points C(3, 1, -1) and D(4, 5, -2).

(*Hint: The distance is to be measured along the line perpendicular to the two lines.*)

- Q.2 Find the point in which the line through the origin perpendicular to the plane 2x y z = 4 meets the plane 3x 5y + 2z = 6.
- Q.3 Show that the line in which the planes x + 2y 2z = 5 and 5x 2y z = 0 intersect is parallel to the line $\begin{cases} x = -3 + 2t \\ y = 3t \\ z = 1 + 4t \end{cases}$
- Q.4 The planes 3x + 6z = 1 and 2x + 2y z = 3 intersect in a line. Show that the planes are orthogonal. Also find parametric equations for the line of intersection.
- Q.5 A particle moves around the ellipse $(y/3)^2 + (z/2)^2 = 1$ in the yz-plane in such a way that its position at time t is $\mathbf{r}(t) = (3\cos t)\mathbf{j} + (2\sin t)\mathbf{k}$. Find the maximum and minimum values of the speed $|\mathbf{v}|$ and the magnitude of acceleration $|\mathbf{a}|$.

(*Hint: Find the extreme values of* $|\mathbf{v}|^2$ and $|\mathbf{a}|^2$ and take square roots at the end).

- Q.6 Find the point on the curve $\mathbf{r}(t) = (5 \sin t)\mathbf{i} + (5 \cos t)\mathbf{j} + (12t)\mathbf{k}$ at a distance 26π units along the curve from the origin in the direction of increasing arc length.
- Q.7 Find the length of the curve $\mathbf{r}(t) = (\sqrt{2}t)\mathbf{i} + (\sqrt{2}t)\mathbf{j} + (1-t^2)\mathbf{k}$ from (0,0,1) to $(\sqrt{2},\sqrt{2},0)$.
- Q.8 Find the tangent vector **T**, normal vector **N** and curvature κ for the plane curve $\mathbf{r}(t) = (t)\mathbf{i} + (\ln \cos t)\mathbf{j}$ where $-\pi/2 < t < \pi/2$.

"Every stumble is not a fall, and every fall does not mean failure." \sim Oprah Winfrey