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Abstract: The notion of elastic scattering coefficients (ESC) is introduced to address a broad

range of inverse scattering and imaging problems in elastic media. The link between scattering

amplitudes and ESC of small inclusions is established.
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1. Introduction

The notion of scattering coefficients for acoustic and electromagnetic inclusions emerged in an effort to design en-

hanced near invisibility cloaks [4, 5]. These mathematical objects contain rich information of the contrast of material

parameters, high order shape oscillations, frequency profile, and the maximum resolving power. They have been effec-

tively used for inverse medium scattering [3], echo-location and shape description [6], and mathematical understanding

of super-resolution phenomena in imaging [2]. In electromagnetic or acoustic media, scattering coefficients provide

a natural extension to the concept of contracted polarization tensors with respect to frequency dependence. They

are defined in terms of the Fourier-Bessel coefficients (in 2D) or spherical harmonic coefficients (in 3D) of the far-

field scattering amplitude and can be retrieved with high accuracy from the multi-static response data by solving a

least-squares optimization problem.

The impetus behind this study is the mathematical imaging of small elastic inclusions of diminishing characteristic

size. Our focus is on introducing two dimensional ESC using cylindrical eigen-vectors of the Lamé equation and on

establishing their role in elastic scattering. To this end, a few preliminary results are summarized in Section 2. Then,

ESC are defined and related to the far field elastic scattering amplitudes in Section 3.

2. Preliminaries and Mathematical Formulation

Let R2 be loaded with a linear isotropic elastic material possessing homogeneous Lamé parameters λ0,µ0 ∈ R+

and density ρ0 ∈ R+. Let D ⊂ R2 with connected boundary ∂D and homogeneous parameters λ1,µ1,ρ1 ∈ R+ be a

sufficiently smooth open bounded elastic inclusion such that (λ0 −λ1)(µ0 − µ1) > 0. For any smooth vector field w,

let us define the elasticity and surface traction operators ∆e
a[w] and Tν [w] respectively by

∆a
e[w] := µa∆w+(λa+ µa)∇∇ ·w and T a

ν [w] := λa(∇ ·w)ν + µa

(

∇w+(∇w)t
)

, a = 0,1, (1)

where ν is the outward unit normal to ∂D and t reflects matrix transpose. Henceforth cP =
√

(λ0 + 2µ0)/ρ0, cS =
√

µ0/ρ0, kα = ω/cα , α,β ∈ {P,S} and ω ∈ R+. Let Ga
ω(x,y) be the fundamental solution to the Lamé system

−(∆e
a +ρaω2) in R2. Then, we define the single layer potential Sa

D by

Sa
D[ψ ](x) :=

∫

∂D
Ga

ω(x,y)ψ(y)dσ(y), x ∈ R
2, ψ ∈ L2(∂D)2. (2)

Let U and u be respectively the incident field and resulting total field in R2 satisfying the Lamé equations

∆0
e[U]+ρ0ω2U = 0 and

{

µ∆u+(λ + µ)∇∇ ·u+ρω2u = 0

(u−U) satisfies the Kupradze’s radiation conditions,
(3)

with µ =
(

µ0χ
R2\D − µ1χD

)

, λ =
(

λ0χ
R2\D −λ1χD

)

, ρ =
(

ρ0χ
R2\D −ρ1χD

)

. (4)
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Then, the total field u admits the integral representation

u(x) = U(x)+ S0
D[ψ ](x), x ∈ R

2 \D and u(x) = S1
D[ϕ ](x), x ∈ D, (5)

where the pair (ϕ ,ψ) ∈ L2(∂D)2 ×L2(∂D)2 satisfies

S1
D[ϕ ]− S0

D[ψ ] = U|∂D and T 1
ν S1

D[ϕ ]
∣

∣

−
−T 0

ν S0
D[ψ ]

∣

∣

=
T 0

ν U|∂D (with w(x)
∣

∣

±
:= lim

ε→0+
w(x± εν)). (6)

Following result on unique solvability of (6) holds; see, for instance, [1, Theorem 1.7].

Theorem 2.1. Let D be a Lipschitz domain such that ω2ρ1 is different from Dirichlet eigenvalues of the operator −∆1
e

on D. Then, for any
(

U,T 0
ν U

)

∈ H1(∂D)2 ×L2(∂D)2 there exists a unique solution (ϕ ,ψ) ∈ L2(∂D)2 ×L2(∂D)2 of

(6). Moreover, there exists a constant C ∈ R+ such that

‖ϕ‖L2(∂D)2 + ‖ψ‖L2(∂D)2 ≤C
(

‖U‖H1(∂D)2 +
∥

∥T 0
ν U

∥

∥

L2(∂D)2

)

. (7)

3. Elastic Scattering Coefficients

Let H
(1)
m and Jm be the order m ∈ Z Hankel and Bessel functions of first kind respectively. For each k > 0, m ∈ Z, let

um(x,k) := Jm(k|x|)e
imϕx and vm(x,k) := H

(1)
m (k|x|)eimϕx , where x = (|x|cosϕx, |x|sinϕx). (8)

Let us also introduce the cylindrical longitudinal and transverse eigen-vectors of the Lamé equation by

UP
m(x,kP) := ∇um(x,kP), US

m(x,kS) := ∇× (e3um(x,kS)) (9)

VP
m(x,kP) := ∇vm(x,kP), VS

m(x,kS) := ∇× (e3vm(x,ks)), (10)

where e3 is the unit normal vector to the (x1,x2)−plane. The following result holds on the completeness and linear

independence of
(

UP
m,U

S
m

)

and
(

VP
m,V

S
m

)

with respect to L2(∂D)2 norm; see, for instance, [8, Lemmas 1-3].

Lemma 3.1. Let D ⊂ R2 be simply connected domain containing origin and ∂D be a closed Lyapunov curve. Then,

the set {VP
m,V

S
m : m ∈ Z} is complete and linearly independent in L2(∂D)2. Moreover, if ρ1ω2 is not a Dirichlet

eigenvalue of −∆1
e on D, then the set {UP

m,U
S
m : m ∈ Z} is also complete and linearly independent in L2(∂D)2.

As a consequence of Lemma 3.1, for every incident field U there exist constants aP
m,a

S
m ∈ C for all m ∈ Z such that

U(x,ω) = ∑
m∈Z

(

aS
mUS

m(x,kS)+ aP
mUP

m(x,kP)
)

. (11)

In particular, for any direction of incidence d = (cosθ ,sinθ ) with d⊥ ·d = 0, a general plane wave

U(x,ω) =
1

ρ0c2
S

eikSx·d d⊥+
1

ρ0c2
P

eikPx·d d =−

(

i

ρ0c2
SkS

∇×
[

e3 eikSx·d
]

+
i

ρ0c2
PkP

[

∇eikPx·d
]

)

(12)

can be written in the form (11) with a
β
m(U) = −ieim(π/2−θ)/ρ0c2

β kβ . In fact, this is a simple consequence of Jacobi-

Anger decomposition of the plane wave eikx·d = ∑m∈Z eim(π/2−θ)Jm(k|x|)e
imθx . Note also that for all x,y ∈R2 such that

|x|> |y| and for any vector p ∈ R2 (independent of x)

G0
ω(x,y)p =−

i

4ρ0c2
S

∑
n∈Z

VS
n(x,kS)

[

US
n(y,kS) ·p

]

−
i

4ρ0c2
P

∑
n∈Z

VP
n (x,kP)

[

UP
n (y,kP) ·p

]

. (13)

Consequently, thanks to integral representation (5), for all x ∈ R2 \D

u(x)−U(x) =−
i

4ρ0
∑
n∈Z

[

1

c2
P

VS
n(x,kS)

∫

∂D

[

US
n(y,kS) ·ψ(y)

]

dσ(y)+
1

c2
S

VP
n (x,kP)

∫

∂D

[

UP
n (y,kP) ·ψ(y)

]

dσ(y)

]

.

(14)

We are now fully equipped to define the ESC associated with inclusion D.
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Definition 3.2. Let
(

ϕ
β
m ,ψ

β
m

)

be the solution of (6) with U = U
β
m for all m ∈ Z. Then, ESC of D are defined by

W α ,β
n,m =W α ,β

n,m [D,λ0,λ1,µ0,µ1,ρ0,ρ1,ω ] :=

∫

∂D

[

Uα
n (y,kα) ·ψ

β
m(y)

]

dσ(y), n,m ∈ Z. (15)

The following properties of the ESC can be proved after fairly easy manipulations.

Theorem 3.3. There exist constants Cα ,β > 0 such that for each mode α,β = P,S
∣

∣

∣
W α ,β

m,n [D,λ0,λ1,µ0,µ1,ρ0,ρ1,ω ]
∣

∣

∣
≤C

|n|+|m|−2

α ,β
|n|1−|n||m|1−|m|, ∀m,n ∈ Z, |m|, |n| → ∞. (16)

Moreover, with superposed bar reflecting complex conjugate,

W α ,β
m,n =W

β ,α
n,m = (−1)m+nW

α ,β
−m,−n for all m,n ∈ Z. (17)

3.1. Connection Between ESC, Scattered Field and Far Field Scattering Amplitudes

Suppose that U is of the form (12) with decomposition (11). Then, by superposition principle,

ψ(x) = ∑
m∈Z

[

aP
mψP

m + aS
mψS

m

]

and ϕ(x) = ∑
m∈Z

[

aP
mϕP

m + aS
mϕS

m

]

. (18)

This, together with Definition 3.2 and expansion (14), renders the expansion

u(x)−U(x) = ∑
n,m∈Z

[(

γP
mW P,P

m,n + γS
mW P,S

m,n

)

VP
n (x,kP)+

(

γP
mW S,P

m,n + γS
mW S,S

m,n

)

VS
n(x,kS)

]

as |x| → ∞, (19)

where γα
m :=−iaα

m/4ρ0c2
α . Moreover, thanks to far field behavior of H

(1)
n [7, Formulae 10.2.5 and 10.17.11],

VP
n (x,kP)∼

eikP|x|

√

|x|
A∞,P

n einφx êr and VS
n(x,kS)∼

eikS|x|

√

|x|
A∞,S

n einφx êθ as |x| → ∞, (20)

where êr and êθ are the radial and angular unit vectors and

A∞,P
n := (i+ 1)kPe−inπ/2

√

kP/π and A∞,S
n :=−(i+ 1)kSe−inπ/2

√

kS/π. (21)

Thus, the following result is proved.

Theorem 3.4. For incident field U given by (11), longitudinal and transverse scattering amplitudes are given by

u∞
P [D](x̂) = ∑

n,m∈Z

(

γP
mW P,P

m,n + γS
mW P,S

m,n

)

A∞,P
n einϕx êr and u∞

S [D](x̂) = ∑
n,m∈Z

(

γP
mW S,P

m,n + γS
mW S,S

m,n

)

A∞,S
n einϕx êθ . (22)
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