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Abstract. An asymptotic expression of the scattered electromagnetic far-field due to a small
spherical dielectric inclusion illuminated by an impulsive vector source nearby is proposed first.
Then, a time-reversal technique enabling to locate the position of this inclusion is developed
and its performances are illustrated from numerical simulations.

1. Introduction
In previous works, e.g., [4], asymptotic formulas of the electromagnetic fields scattered by a
small inclusion (dielectric, magnetic, or perfectly conducting as well) or a finite collection of
them have been developed in the frequency domain up to leading order vs. frequency and size
of the inclusion. In acoustics and elasticity, similar asymptotic expansions have been rigorously
established for both near- and far-fields scattered by similar inclusions in the frequency domain,
again at leading order. From these expansions, one can investigate transient-wave cases by
truncating (to summarize) the high frequencies and using inverse Fourier transforms, [1, 2].
This approach has been investigated and numerical simulations proposed in [9].

In this contribution, the electromagnetic case is investigated. A small 3-D bounded inclusion
D with ideal dielectric permittivity ϵ and air magnetic permeability µ0 (no magnetic behavior is
set forth but the analysis extends to it) is considered, letting D = δB + z, where B is a regular
enough bounded domain in R3 which is representing the volume of the inclusion, z is the vector
position of its center, and δ is the scale factor. This inclusion is located in the background (air)
medium with air permittivity ϵ0, letting c = 1/

√
µ0ϵ0 as the speed of light. It is illuminated by a

point electric dipole at location ȳ assumed far away from z. The question is threefold: Can one
get a meaningful asymptotic expression of the scattered magnetic far-field in the time-harmonic
regime? How does the corresponding formulation develop in the time-domain? Is time reversal
as an imaging method a good mean to locate the inclusion?

The organization of the contribution is in parallel to the questioning. First, the asymptotic
formula of the scattered magnetic far-field in frequency is introduced. Then, the one in time,
by truncating high frequencies and applying the inverse Fourier transform, is proposed. Finally,
time-reversal is developed and numerically illustrated as a method of localization of the inclusion.
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2. Asymptotic formula of the scattered magnetic field in frequency domain
As already said, an ideal electric dipole with e vector direction is set at ȳ in air, and it is taken
as the source of the illumination. One defines Je = eδ(r − ȳ) as the electric current density
in space. At circular frequency ω (time-harmonic dependence as +jωt), the time-harmonic
scattering problem in the presence of the inclusion reads as

∇×
(

1

ϵ0
∇×H

)
− ω2µ0H = ∇× 1

ϵ0
Je in R3 \D

∇×
(
1

ϵ
∇×H

)
− ω2µ0H = 0 in D̄

1

ϵ0
(∇×H)+ × ν − 1

ϵ
(∇×H)− × ν = 0 on ∂D

µ0H
+ · ν − µ0H

− · ν = 0 on ∂D

Here ν is the unit normal on ∂D, exponents + and − referring to limit values from the outside and
the inside as usual. Gme is the magnetic-electric dyadic Green function in free space, satisfying
the dyadic Helmholtz equation

∇×∇×Gme − ω2

c2
Gme = ∇× Iδ (r) . (1)

with proper behavior to be accounted for at infinity. H0 is the incident magnetic field (the field
due to the dipole in the absence of the inclusion) such as

∇×
(

1

ϵ0
∇×H0

)
− ω2µ0H0 = ∇× 1

ϵ0
Je in R3, and ∇ ·H0 = 0 in R3

or equivalently H0(r, ȳ, ω) = −Gme(r, ȳ, ω) · e, where Gme(r, ȳ) = ∇ × I
e−iω

c
|r−ȳ|

4π|r− ȳ|
, using the

notation (r, ȳ, ω) to mark the dependence upon the source dipole and frequency.
Let henceforth assume that the source point ȳ lies far enough from the inclusion, and that

this is true as well for the observation point x. One derives an asymptotic representation of the
magnetic field in the frequency domain when (ω/c)δ << 1 [5]:

(H−H0) (x, ȳ, ω) ≈ δ3Gme (x, z, ω) ·M (ϵ, B)∇×H0 (z, ȳ, ω) , (2)

wherein the (frequency-independent) polarization tensor M (ϵ, B) in the case of a small dielectric
spherical inclusion reduces to [3] M (ϵ, B) = 3(ϵ− ϵ0)(ϵ+2ϵ0)

−1|B|I, with immediate extensions
to the general triaxial ellipsoid and oblate and prolate spheroids.

The asymptotic formula is given at leading order in terms of frequency and size of the
inclusion. The latter should be small compared to the wavelength of the wave impinging upon
it. Then, as known, it behaves as a radiative electric dipole.

3. Asymptotic formula of the scattered magnetic field in time domain
Now, one considers the time-domain counterpart of the previous results. The magnetic-electric
dyadic Green function Gme is solution of the dyadic Helmholtz equation

∇×∇×Gme +
1

c2
∂2

∂t2
Gme = ∇× Iδ (r) δ (t) (3)

with again proper behavior at infinity. One easily shows that

Gme (r, t) = ∇× I
δ (t− |r|/c)

4π|r|
=

[
δ (t− |r|/c)

|r|
+
δ′ (t− |r|/c)

c

]
r̂× I

4π|r|
(4)
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where r̂ = r/|r|, δ′(α) = dδ(α)/d(α). As for the incident magnetic field radiated by an electric
dipole source at ȳ, it is given in the time domain by [8]:

H0(r, ȳ, t) = −Gme(r, ȳ, t) · e. (5)

To derive the time-domain asymptotic formula, one needs to truncate the high frequencies.
Once those higher than ωc are taken off, the Dirac impulsion exciting the electric dipole becomes

ψ (t) =

∫
|ω|≤ωc

ejωt
dω

2π
=

sinωct

πt
. (6)

The operator Pωc can be defined as a tempered distribution by Pωc [ψ] (t) =
∫
|ω|≤ωc

ψ̂ (ω) ejωt
dω

2π
.

Applying the inverse Fourier transform of (2) after truncating the high frequencies, a truncated
equation satisfied by the incident field follows as ∇×

(
1

ϵ0
∇× Pωc [H0]

)
+ µ0

∂2

∂t2
Pωc [H0] = ∇× δ (r− ȳ)ψ (t) e in R3 × R

∇ · Pωc [H0] = 0 in R3 × R

If the point of observation is away from the inclusion, the asymptotic formula of the scattered
magnetic field, when ω << c/δ, can be written as :

Pωc [H−H0] (x, ȳ, t) ≈ δ3
∫
R
Pωc [G

me] (x, z, t− τ) · M (ϵ, B)∇ × Pωc [H0] (z, ȳ, τ) dτ, (7)

In the above, the truncated dyadic Green function Pωc [G
me] is

Pωc [G
me] (r, t) =

[
ψ (t− |r|/c)

|r|
+
ψ′ (t− |r|/c)

c

]
r̂× I

4π|r|
. (8)

From (7), scattering by the inclusion is equivalent to radiation of an electric dipole with
specific time-dependence.

The sinc signal is not causal. To avoid this non-causality problem, one could instead use
as source pulse on the electric dipole (this will impact the incident field and thus the scattered
field) a time-shifted sinc centred at large enough ts so as to be close to zero at the time origin
(computationally speaking, several orders of magnitude smaller than the peak value). One
could also introduce a Gaussian pulse and shift it. A possibly better solution would be to use as
source pulse the derivative of the Blackman-Harris one [10], to maintain causality while ensuring
a reasonably wide band, truncation then being effected at ωc large vs. the usable bandwidth.

4. Time reversal
The idea of time-reversal is to record the transient tangential components of the wavefield on a
closed surface surrounding the inclusion, and to retransmit them onto the same background in
time-reversed chronology. Then the wave should refocus at the location of the inclusion[7, 6].

So, one assumes that the tangential components of the fields are collected on a large sphere
S with normal ν surrounding the inclusion D for a sufficiently large window of time t0. Time-
reversal is described by the transform t 7→ t0 − t. Then, both tangential components on S
are time-reversed and emitted from S. A time-reversed field Htr propagates into the interior
volume. Using the asymptotic formula (7), one can prove that it is approximated by [2]

Htr (x, ȳ, t) ≈
∫
R
dt′

∫
S

[
Gee

(
x,x′, t− t′

)
·
(
ν ×∇× Pωc [H−H0]

(
x′, ȳ, t0 − t′

))
+∇×Gee

(
x,x′, t− t′

)
·
(
ν × Pωc [H−H0]

(
x′, ȳ, t0 − t′

))]
dσ(x′). (9)

2nd Int. Workshop on New Computational Methods for Inverse Problems (NCMIP 2012) IOP Publishing
Journal of Physics: Conference Series 386 (2012) 012010 doi:10.1088/1742-6596/386/1/012010

3



the dependence upon z in the reversed field being implied, where Gee is defined in [11].
One gets

Htr (x, ȳ, t) ≈ −δ3
∫
R
dτ

∫
R
dt′

∫
S

[
Gee

(
x,x′, t− t′

)
·
(
ν ×∇× Pωc [G

me]
(
x′, z, t0 − τ − t′

))
+

∇×Gee
(
x,x′, t− s

)
·
(
ν × Pωc [G

me]
(
x′, z, t0 − τ − t′

))]
· p(z, ȳ, τ)dσ(x′).

Since ∫
R
dt′

∫
S

[
Gee

(
x,x′, t− t′

)
·
(
ν ×∇× Pωc

[
Gme

(
x′, z, t0 − τ − t′

))]
+

∇×Gee
(
x,x′, t− t′

)
·
(
ν × Pωc [G

me]
(
x′, z, t0 − τ − t′

))]
dσ(x′)

= µ0
∂

∂t
[Pωc [G

me (x, z, t0 − τ − t)]− Pωc [G
me (x, z, t− t0 + τ)]] , (10)

one arrives at

Htr (x, ȳ, t) ≈ −δ3
∫
R

µ0
∂

∂t
[Pωc [G

me (x, z, t0 − τ − t)]− Pωc [G
me (x, z, t− t0 + τ)]]

·p (z, ȳ, τ) dτ, (11)

where p(z, ȳ, τ) = M(ϵ, B) · ∇ × Pωc [H0] (z, ȳ, τ).
The interpretation is that there is superposition of ingoing and outgoing waves, centered at

location z of the inclusion. To show it more clearly, one assumes that p(z, ȳ, τ) is concentrated
at τ = T = |z− ȳ|/c, which is reasonable since p(z, ȳ, τ) peaks at τ = T . Then, (11) becomes

Htr (x, ȳ, t) ≈ −δ3µ0
∂

∂t
[Pωc [G

me (x, z, t0 − T − t)]− Pωc [G
me (x, z, t− t0 + T )]] · p(z, ȳ, T ),

(12)
indeed exhibiting ingoing and outgoing spherical waves.

Taking the Fourier transform of (10) and (11), letting ∗ denote the conjugate, one obtains:

Htr (x, ȳ, ω) ≈
∫
S

[
Gee

(
x,x′, ω

)
·
(
ν ×∇× [H−H0]

∗ (x′, z, ω
))

+∇×Gee
(
x,x′, ω

)
·
(
ν × [H−H0]

∗ (x′, z, ω
))]

dσ(x′)

= −2ωµ0δ
3ℑmGme(x, z, ω) ·M(ϵ, B)∇×H0(z,y, ω). (13)

The time-reversed field is proportional to the imaginary part of the Green dyad (manifesting
the Rayleigh resolution, not withstanding polarization-dependent phenomena). Refer to classical
results on the generalized Porter-Bojarski integral equation, e.g., among many, [12].

5. Numerical simulations
A dielectric inclusion of diameter λ/25 where λ = 0.75m and relative permittivity 3 is placed
at the origin of space. It is illuminated by a point dipole at (6λ = 4.5 m, 0, 0) position (i.e.,
T = 15ns), with unit direction e = [0, 1, 0]. All frequencies above 400 MHz are truncated. Figure
1 shows the excitation signal sinc shifted by ts = 20 ∗ (2π/ωc) = 50ns and the z-component of
the scattered magnetic field computed by the asymptotic formula in the time domain as function
of time (at the location of the source see Fig. 2). As expected, the scattered field is concentrated
around the propagation time of the wave, at t = 2T + ts = 80ns.

Time reversal is applied to locate the inclusion at instant t = t0−T in the plane (x, y), where
t0 = 140ns (one is safely close to a 0 magnitude of the recorded field). Figure 3 indeed depicts
an anti-symmetric focal spot at the position of the inclusion.
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Figure 1. sinc excitation shifted
by ts = 50ns.
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Figure 2. z-component of the
scattered magnetic field.
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Figure 3. Time reversal of the z-
component of the magnetic field in
plane (x, y) at time t = 125ns.

Now, one excites the dipole by a causal signal as the first derivative of the Blackman-Harris
pulse with central frequency fc = 100 MHz where λc = 3m (to respect the bandwidth limitation),
the duration of the source being Tc = 1.55/fc = 15.5ns (see Fig. 4). Figure 5 shows that the
z-component of the scattered field at the source location as a function of time is concentrated
at instant t = 37.75ns with duration Tc .
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Figure 4. Derivative of Blackman-
Harris signal excitation.
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Figure 5. The z-component of the
scattered magnetic field.

In figure 6, we plot the z-component of the time-reversed magnetic field at instant 67.25ns in
the plane (x, y), letting t0 = 90ns.
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Figure 6. Time reversal of the z-
component of the magnetic field in
plane (x, y) at time t = 67.25ns.

6. Conclusion
Asymptotic formulas of the magnetic field (per duality, electric, if need be) scattered by a small
dielectric inclusion in the time domain have been validated. Time-reversal enables to refocus to
some extent onto the position of the inclusion. The next step is to study the effect of dispersion
and attenuation of the background medium involved on the performance of this approach.
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