Solution Key

Q. 1 Suppose that $x=2 u+v, y=u / v$ and $z=e^{x y}$. Use an appropriate form of the chain rule to find $\partial z / \partial u$ and $\partial z / \partial v$.

Sol. We have

$$
\begin{aligned}
\frac{\partial z}{\partial u} & =\frac{\partial z}{\partial x} \frac{\partial y}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}=\left(y e^{x y}\right)(2)+\left(x e^{x y}\right)\left(\frac{1}{v}\right)=\left(2 y+\frac{x}{v}\right) e^{x y} \\
& =\left(\frac{2 u}{v}+\frac{2 u+v}{v}\right) e^{(2 u+v)(u / v)}=\left(\frac{4 u}{v}+1\right) e^{(2 u+v)(u / v)}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial z}{\partial v} & =\frac{\partial z}{\partial x} \frac{\partial y}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}=\left(y e^{x y}\right)(1)+\left(x e^{x y}\right)\left(-\frac{u}{v^{2}}\right)=\left(y-\frac{x u}{v^{2}}\right) e^{x y} \\
& =\left(\frac{u}{v}-\frac{(2 u+v) u}{v^{2}}\right) e^{(2 u+v)(u / v)}=-\left(\frac{2 u^{2}}{v^{2}}\right) e^{(2 u+v)(u / v)} .
\end{aligned}
$$

Q. 2 Locate all the relative extrema and saddle points of $f(x, y)=3 x^{2}-2 x y+y^{2}-8 y$.

Sol. Since $f_{x}(x, y)=6 x-2 y$ and $f_{y}(x, y)=-2 x+2 y-8$, the critical points of f satisfy the equations

$$
f_{x}(x, y)=6 x-2 y=0, \quad f_{y}(x, y)=-2 x+2 y-8=0 .
$$

Solving these equations for x and y yields $x=2$ and $y=6$, so $(2,6)$ is the only critical point.

We also need the second-order partial derivatives in order to apply the second derivative test for extrema and saddle points. We have

$$
f_{x x}(x, y)=6, \quad f_{y y}(x, y)=2, \quad f_{x y}(x, y)=-2 .
$$

At the point $(2,6)$, we have

$$
D=f_{x x}(2,6) f_{y y}(2,6)-f_{x y}^{2}(2,6)=6(2)-(-2)^{2}=8>0
$$

and

$$
f_{x x}(2,6)=6>0
$$

So, f has a relative minimum at $(2,6)$ by second derivative test.
Q. 3 Suppose that the temperature at a point (x, y) on a metal plate is $T(x, y)=4 x^{2}-4 x y+y^{2}$. An ant, walking on the plate, traverses a circle of radius 5 centered at the origin. What are the highest and lowest temperatures encountered by the ant?

Sol. The ant is constrained to traverse in a circle of radius 5 . Therefore, assuming the center of the circle to be the origin, the constraint equation is $x^{2}+y^{2}=25$. Thus, the objective function is $T(x, y)=4 x^{2}-4 x y$ and the constraint function is $g(x, y)=x^{2}+y^{2}-25$. By using method of Lagrange multipliers, we set $\nabla T=\lambda \nabla g$, i.e.,

$$
(8 x-4 y) \mathbf{i}-4 x \mathbf{j}=\lambda(2 x \mathbf{i}+2 y \mathbf{j}) .
$$

In components, we have $8 x-4 y=2 x \lambda$ and $-4 x+2 y=2 y \lambda$. Note that x and y cannot be zero, because if $x=0$ then $y=0$ and conversely; however, $x^{2}+y^{2}=25$. Therefore, both x and y are non-zero. Thus, $\lambda=(4 x-2 y) / x$ and $\lambda=(-2 x+y) / y$ from the component equations above. So
$(4 x-2 y) / x=(-2 x+y) / y \quad \Longleftrightarrow \quad 2 x^{2}+3 x y-2 y^{2}=0 \quad \Longleftrightarrow \quad(2 x-y)(x+2 y)=0$.
Therefore, either $y=2 x$ or $x=-2 y$. If $y=2 x$ then $x^{2}+(2 x)^{2}=25$, i.e., $x= \pm \sqrt{5}$. If $x=-2 y$ then $(-2 y)^{2}+y^{2}=25$, i.e., $y= \pm \sqrt{5}$. Therefore, the possible points of extrema are $(-\sqrt{5},-2 \sqrt{5}),(\sqrt{5}, 2 \sqrt{5}),(-2 \sqrt{5}, \sqrt{5})$ and $(2 \sqrt{5},-\sqrt{5})$. Since

$$
T(-\sqrt{5},-2 \sqrt{5})=0=T(\sqrt{5}, 2 \sqrt{5}) \quad \text { and } \quad T(-2 \sqrt{5}, \sqrt{5})=125=T(2 \sqrt{5},-\sqrt{5}) .
$$

The highest temperature is 125 and the lowest temperature is 0 subject to the constraint $x^{2}+y^{2}=25$.
Q. 4 The rooftop of a building is designed in the form of an inclined plane through the point $(4,3,0)$ and parallel to the beams represented by the vectors $\mathbf{i}+\mathbf{k}$ and $2 \mathbf{j}-\mathbf{k}$. Find the equation of the rooftop.

Sol. Since the plane is parallel to the beam vectors $\mathbf{i}+\mathbf{k}$ and $2 \mathbf{j}-\mathbf{k}$. The normal to the plane is also normal to the beams. Therefore, a normal vector (denoted \mathbf{n}) on the rooftop is given by

$$
\mathbf{n}=(\mathbf{i}+\mathbf{k}) \times(2 \mathbf{j}-\mathbf{k})=\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 1 \\
0 & 2 & -1
\end{array}\right)=-2 \mathbf{i}+\mathbf{j}+2 \mathbf{k} .
$$

Let $P(x, y, z)$ be an arbitrary point on the plane representing the rooftop passing through the point $P_{0}(4,3,0)$. Then, the equation of the rooftop is given by

$$
\mathbf{n} \cdot \overrightarrow{P_{0} P}=0 \Longrightarrow-2(x-4)+1(y-3)+2(z-0)=0 \Longrightarrow-2 x+y+2 z=-5 .
$$

This is the required equations.
Q. 5 Find the triple integral of $f(x, y, z)=z$ over the slice of the hemisphere shown in Figure 1 using the triangular "shadow" in the $x y$-plane.

Figure 1: Hemisphere and the shadow region.

Sol. Note that the slice of the hemisphere in Figure 1 is bounded by the planes $y=3 x, x=0$ and $z=0$ and by the surface $z=\sqrt{9-y^{2}}$. Moreover the shadow region is defined by the triangle in the $x y$-plane bounded by the lines $y=3 x, y=3$ and $x=0$. Therefore, by method of slicing a vertical line parallel to z-axis will enter the hemispherical domain from $z=0$ and leave it from the surface $z=\sqrt{9-y^{2}}$. If we slice the shadow by lines parallel to y-axis, then such lines will render the x - and y-limits as $x \in[0,1]$ and $y \in[3 x, 3]$. (We could also have chosen to slice the shadow region by lines parallel to x-axis, then the x - and y - limits will be be $y \in[0,3]$ and $x \in[0, y / 3])$.
Therefore, the required triple integral of $f(x, y, z)=z$ over the hemisphere is

$$
\begin{aligned}
\iiint_{D} f(x, y, z) d V & =\int_{0}^{1} \int_{3 x}^{x} \int_{0}^{\sqrt{9-y^{2}}} z d z d y d x=\int_{0}^{1} \int_{3 x}^{3}\left(\left.\frac{z^{2}}{2}\right|_{0} ^{\sqrt{9-y^{2}}}\right) d y d x \\
& =\frac{1}{2} \int_{0}^{1} \int_{3 x}^{3}\left(9-y^{2}\right) d y d x=\left.\frac{1}{2} \int_{0}^{1}\left[9 y-\frac{y^{3}}{3}\right]\right|_{3 x} ^{3} d x \\
& =\frac{9}{2} \int_{0}^{1}\left[3(1-x)-(1-x)^{3}\right] d x=-\left.\frac{9}{2}\left[\frac{3}{2}(1-x)^{2}-\frac{1}{4}(1-x)^{4}\right]\right|_{0} ^{1} \\
& =\frac{9}{2}\left(\frac{3}{2}-\frac{1}{4}\right)=\frac{45}{8}
\end{aligned}
$$

Q. 6 Express the integral $I=\int_{0}^{2} \int_{0}^{y} x d x d y$ as a polar integral.

Sol. First we sketch the integration region in Figure 2. The outer integration limit is $y \in[0,2]$

Figure 2: Region of intergation in cartesian (left) and polar coordinates (right).
and the for every y, the x coordinate satisfies $x \in[0, y]$. The upper limit for x is the curve $y=x$. It is simple to describe this domain in polar coordinates since $y=x$ is $\theta_{1}=\frac{\pi}{4}$, the line $x=0$ is $\theta_{2}=\frac{\pi}{2}$. From the right figure in 2 , one can easily see that the lower integration limit in r is $r=0$ and the upper limit is $2=y=r \sin \theta$ or $r=2 / \sin \theta$. Finally, recall that $x=r \cos \theta$ and $y=r \sin \theta$. Therefore, we conclude that

$$
\int_{0}^{2} \int_{0}^{y} x d x d y=\int_{\pi / 4}^{\pi / 2} \int_{0}^{2 / \sin \theta}(r \cos \theta) r d r d \theta
$$

Q. 7 Evaluate the integral $\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} d y d x$ by first reversing the order of integration.

Sol. If we tried to integrate with respect to y first, we cannot do it. Notice first that the region of double integration has two properties: $0 \leq x \leq 3$ and $x^{2} \leq y \leq 9$. We then can draw the region (see, Figure 3).
By the method of slicing, we invade the region by arbitrary horizontal line that gives us the y-limits $0 \leq y \leq 9$. One the other hand an arbitrary horizontal line meets the region at two points $x=0$ and when $x^{2}=y$ or simply $x=\sqrt{y}$ (we consider the positive root because we are handling the region in the first quadrant). Therefore, the x - limits are $x=0$ and $x=\sqrt{y}$.

Figure 3: Region of intergation Q.7.
Thus, the required integral in the reverse order is given by

$$
\begin{aligned}
\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} d y d x & =\int_{0}^{9} \int_{0}^{\sqrt{y}} x^{3} e^{y^{3}} d x d y=\left.\int_{0}^{9}\left(\frac{1}{4} x^{4} e^{y^{3}}\right)\right|_{0} ^{\sqrt{y}} d y=\frac{1}{4} \int_{0}^{9} y^{2} e^{y^{3}} d y \\
& =\left.\frac{1}{12} e^{y^{3}}\right|_{0} ^{9}=\frac{1}{12}\left(e^{729}-1\right)
\end{aligned}
$$

Q. 8 Suppose that a semicircular wire has the equation $y=\sqrt{25-x^{2}}$ and that its mass density is $\delta(x, y)=15-y$. Find the mass of the wire using line integrals over the curve C representing the wire and the standard parametrization of the semi-circle, i.e., $x(\theta)=r \cos \theta$ and $y(\theta)=$ $r \sin \theta$ with parameter θ.

Sol. The mass M of the wire can be expressed as the line integral

$$
M=\int_{C} \delta(x, y) d s=\int_{C}(15-y) d s
$$

along the semicircle C. To evaluate this integral, we will express C parametrically as

$$
x=5 \cos \theta, \quad y=5 \sin \theta, \quad(0 \leq \theta \leq \pi) .
$$

Note also that the displacement and consequently the velocity vector of the point moving along the curve C are given by $\mathbf{r}(\theta):=5 \cos \theta \mathbf{i}+5 \sin \theta \mathbf{j}, \quad \mathbf{v}(\theta):=-5 \sin \theta \mathbf{i}+5 \cos \theta \mathbf{j}$. Consequently, $|\mathbf{v}(\theta)|=\sqrt{(-5 \sin \theta)^{2}+(5 \cos \theta)^{2}}=\sqrt{25\left(\sin \theta^{2}+\cos \theta^{2}\right)}=5$. Therefore, we have

$$
M=\int_{C}(15-y) d s=\int_{0}^{\pi}(15-5 \sin \theta)|v(\theta)| d \theta=\int_{0}^{\pi}(15-5 \sin \theta) 5 d \theta=\left.25[3 \theta-\sin \theta]\right|_{0} ^{\pi}=75 \pi-50 .
$$

"If you believe it will work out, you'll see opportunities. If you believe it won't, you will see obstacles." - Wayne Dyer

