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Solution Key

Q.1 Suppose that x = 2u + v, y = u/v and z = exy. Use an appropriate form of the chain rule
to find ∂z/∂u and ∂z/∂v.

Sol. We have

∂z

∂u
=
∂z

∂x

∂y

∂u
+
∂z

∂y

∂y

∂u
= (yexy) (2) + (xexy)

(
1

v

)
=
(

2y +
x

v

)
exy

=

(
2u

v
+

2u+ v

v

)
e(2u+v)(u/v) =

(
4u

v
+ 1

)
e(2u+v)(u/v),

and

∂z

∂v
=
∂z

∂x

∂y

∂v
+
∂z

∂y

∂y

∂v
= (yexy) (1) + (xexy)

(
− u

v2

)
=
(
y − xu

v2

)
exy

=

(
u

v
− (2u+ v)u

v2

)
e(2u+v)(u/v) = −

(
2u2

v2

)
e(2u+v)(u/v).

Q.2 Locate all the relative extrema and saddle points of f(x, y) = 3x2 − 2xy + y2 − 8y.

Sol. Since fx(x, y) = 6x − 2y and fy(x, y) = −2x + 2y − 8, the critical points of f satisfy the
equations

fx(x, y) = 6x− 2y = 0, fy(x, y) = −2x+ 2y − 8 = 0.

Solving these equations for x and y yields x = 2 and y = 6, so (2, 6) is the only critical
point.

We also need the second-order partial derivatives in order to apply the second derivative
test for extrema and saddle points. We have

fxx(x, y) = 6, fyy(x, y) = 2, fxy(x, y) = −2.

At the point (2, 6), we have

D = fxx(2, 6)fyy(2, 6)− f2xy(2, 6) = 6(2)− (−2)2 = 8 > 0,

and
fxx(2, 6) = 6 > 0.

So, f has a relative minimum at (2, 6) by second derivative test.

Q.3 Suppose that the temperature at a point (x, y) on a metal plate is T (x, y) = 4x2− 4xy+ y2.
An ant, walking on the plate, traverses a circle of radius 5 centered at the origin. What are
the highest and lowest temperatures encountered by the ant?

1



Sol. The ant is constrained to traverse in a circle of radius 5. Therefore, assuming the center
of the circle to be the origin, the constraint equation is x2 + y2 = 25. Thus, the objective
function is T (x, y) = 4x2 − 4xy and the constraint function is g(x, y) = x2 + y2 − 25. By
using method of Lagrange multipliers, we set ∇T = λ∇g, i.e.,

(8x− 4y)i− 4xj = λ(2xi + 2yj).

In components, we have 8x− 4y = 2xλ and −4x+ 2y = 2yλ. Note that x and y cannot be
zero, because if x = 0 then y = 0 and conversely; however, x2 + y2 = 25. Therefore, both
x and y are non-zero. Thus, λ = (4x − 2y)/x and λ = (−2x + y)/y from the component
equations above. So

(4x− 2y)/x = (−2x+ y)/y ⇐⇒ 2x2 + 3xy − 2y2 = 0 ⇐⇒ (2x− y)(x+ 2y) = 0.

Therefore, either y = 2x or x = −2y. If y = 2x then x2 + (2x)2 = 25, i.e., x = ±
√

5. If
x = −2y then (−2y)2 + y2 = 25, i.e., y = ±

√
5. Therefore, the possible points of extrema

are (−
√

5,−2
√

5), (
√

5, 2
√

5), (−2
√

5,
√

5) and (2
√

5,−
√

5). Since

T (−
√

5,−2
√

5) = 0 = T (
√

5, 2
√

5) and T (−2
√

5,
√

5) = 125 = T (2
√

5,−
√

5).

The highest temperature is 125 and the lowest temperature is 0 subject to the constraint
x2 + y2 = 25.

Q.4 The rooftop of a building is designed in the form of an inclined plane through the point
(4, 3, 0) and parallel to the beams represented by the vectors i + k and 2j − k. Find the
equation of the rooftop.

Sol. Since the plane is parallel to the beam vectors i + k and 2j− k. The normal to the plane is
also normal to the beams. Therefore, a normal vector (denoted n) on the rooftop is given
by

n = (i + k)× (2j− k) =



i j k
1 0 1
0 2 −1


 = −2i + j + 2k.

Let P (x, y, z) be an arbitrary point on the plane representing the rooftop passing through
the point P0(4, 3, 0). Then, the equation of the rooftop is given by

n · ~P0P = 0 =⇒ −2(x− 4) + 1(y − 3) + 2(z − 0) = 0 =⇒ −2x+ y + 2z = −5.

This is the required equations.

Q.5 Find the triple integral of f(x, y, z) = z over the slice of the hemisphere shown in Figure 1
using the triangular “shadow” in the xy-plane.
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Triple integrals in arbitrary domains.

Example

Compute the triple integral of f (x , y , z) = z in the region bounded
by x > 0, z > 0, y > 3x , and 9 > y2 + z2.

Solution: We have found the region:

y3

3

1

y = 3x

z

x

z =    9 − y 2

The integration limits are:

I Limits in z :
0 6 z 6

√
9− y2.

I Limits in x : 0 6 x 6 y/3.

I Limits in y : 0 6 y 6 3.

We obtain I =

∫ 3

0

∫ y/3

0

∫ √
9−y2

0
z dz dx dy .

Triple integrals in arbitrary domains.

Example

Compute the triple integral of f (x , y , z) = z in the region bounded
by x > 0, z > 0, y > 3x , and 9 > y2 + z2.

Solution: Recall:
∫ 3

0

∫ y/3

0

∫ √
9−y2

0
z dz dx dy .

For practice purpose only, let us
change the integration order to
dz dy dx : y3

3

1

y = 3x

z

x

z =    9 − y 2

The result is: I =

∫ 1

0

∫ 3

3x

∫ √
9−y2

0
z dz dy dx .Figure 1: Hemisphere and the shadow region.

Sol. Note that the slice of the hemisphere in Figure 1 is bounded by the planes y = 3x, x = 0
and z = 0 and by the surface z =

√
9− y2. Moreover the shadow region is defined by the

triangle in the xy-plane bounded by the lines y = 3x, y = 3 and x = 0. Therefore, by
method of slicing a vertical line parallel to z-axis will enter the hemispherical domain from
z = 0 and leave it from the surface z =

√
9− y2. If we slice the shadow by lines parallel

to y-axis, then such lines will render the x- and y-limits as x ∈ [0, 1] and y ∈ [3x, 3]. (We
could also have chosen to slice the shadow region by lines parallel to x-axis, then the x- and
y- limits will be be y ∈ [0, 3] and x ∈ [0, y/3]).

Therefore, the required triple integral of f(x, y, z) = z over the hemisphere is

∫∫∫

D
f(x, y, z)dV =

∫ 1

0

∫ x

3x

∫ √9−y2

0
zdzdydx =

∫ 1

0

∫ 3

3x

(
z2

2

∣∣∣
√

9−y2

0

)
dydx

=
1

2

∫ 1

0

∫ 3

3x

(
9− y2

)
dydx =

1

2

∫ 1

0

[
9y − y3

3

] ∣∣∣
3

3x
dx

=
9

2

∫ 1

0

[
3(1− x)− (1− x)3

]
dx = −9

2

[
3

2
(1− x)2 − 1

4
(1− x)4

] ∣∣∣
1

0

=
9

2

(
3

2
− 1

4

)
=

45

8
.

Q.6 Express the integral I =

∫ 2

0

∫ y

0
xdxdy as a polar integral.
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Sol. First we sketch the integration region in Figure 2. The outer integration limit is y ∈ [0, 2]

Review: Polar coordinates in plane.

Definition
The polar coordinates of a point P ∈ R2 is the
ordered pair (r , θ) defined by the picture.

P = ( r,    )

x

y

r

0

0

Theorem (Cartesian-polar transformations)

The Cartesian coordinates of a point P = (r , θ) in the first
quadrant are given by

x = r cos(θ), y = r sin(θ).

The polar coordinates of a point P = (x , y) in the first quadrant
are given by

r =
√

x2 + y2, θ = arctan
(y
x

)
.

Recall: Polar coordinates in a plane.

Example

Express in polar coordinates the integral I =

∫ 2

0

∫ y

0
x dx dy .

Solution: Recall: x = r cos(θ) and y = r sin(θ).

More often than not helps to sketch the
integration region.

The outer integration limit: y ∈ [0, 2].

Then, for every y ∈ [0, 2] the x
coordinate satisfies x ∈ [0, y ].

The upper limit for x is the curve y = x .
2

y

x

y = 2

y = x

2

Now is simple to describe this domain in polar coordinates:
The line y = x is θ0 = π/4; the line x = 0 is θ1 = π/2.

Recall: Polar coordinates in a plane.

Example

Express in polar coordinates the integral I =

∫ 2

0

∫ y

0
x dx dy .

Solution: Recall: x = r cos(θ), y = r sin(θ), θ0 = π/4, θ1 = π/2.

The lower integration limit in r is r = 0.

The upper integration limit is y = 2,
that is, 2 = y = r sin(θ).

Hence r = 2/ sin(θ).

2 = y = r sin ( 0 )

y

x

2

2

90

45

We conclude:

∫ 2

0

∫ y

0
x dx dy =

∫ π/2

π/4

∫ 2/ sin(θ)

0
r cos(θ)(r dr) dθ.C

Integrals in cylindrical, spherical coordinates (Sect. 15.6).

I Integration in cylindrical coordinates.
I Review: Polar coordinates in a plane.
I Cylindrical coordinates in space.
I Triple integral in cylindrical coordinates.

Figure 2: Region of intergation in cartesian (left) and polar coordinates (right).

and the for every y, the x coordinate satisfies x ∈ [0, y]. The upper limit for x is the curve
y = x. It is simple to describe this domain in polar coordinates since y = x is θ1 = π

4 , the
line x = 0 is θ2 = π

2 . From the right figure in 2, one can easily see that the lower integration
limit in r is r = 0 and the upper limit is 2 = y = r sin θ or r = 2/ sin θ. Finally, recall that
x = r cos θ and y = r sin θ. Therefore, we conclude that

∫ 2

0

∫ y

0
xdxdy =

∫ π/2

π/4

∫ 2/ sin θ

0
(r cos θ)rdrdθ.

Q.7 Evaluate the integral

∫ 3

0

∫ 9

x2
x3ey

3
dydx by first reversing the order of integration.

Sol. If we tried to integrate with respect to y first, we cannot do it. Notice first that the region
of double integration has two properties: 0 ≤ x ≤ 3 and x2 ≤ y ≤ 9. We then can draw the
region (see, Figure 3).

By the method of slicing, we invade the region by arbitrary horizontal line that gives us the
y-limits 0 ≤ y ≤ 9. One the other hand an arbitrary horizontal line meets the region at two
points x = 0 and when x2 = y or simply x =

√
y (we consider the positive root because

we are handling the region in the first quadrant). Therefore, the x- limits are x = 0 and
x =
√
y.
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Section 5.4 - Changing the Order of Integration

Problem 1. Evaluate the integral by first reversing the order of integration,

x=3∫

x=0

y=9∫

y=x2

x3ey
3

dy dx.

Solution. Even if we tried to integrate with respect to y first, we cannot do it. We can’t just
switch either. In order to integrate with respect to x , we can’t have x’s in the limits. So,
to reverse the order, it is best to first sketch the region. Notice first that our region has two
properties:

0 ≤ x ≤ 3 x2 ≤ y ≤ 9.

We then can draw the region:

Since we want to integrate with respect to x first, we will need limits for x as functions of y
and we need constant bounds for y. Looking at the picture, we get

0 ≤ y ≤ 9 0 ≤ x ≤ √y.
With this information, we can now set up our new integral and hopefully be able to solve it!

x=3∫

x=0

y=9∫

y=x2

x3ey
3

dy dx =

y=9∫

y=0

x=
√
y∫

x=0

x3ey
3

dx dy

=

y=9∫

y=0

(
1

4
x4ey

3

) ∣∣∣∣
x=

√
y

x=0

dy

=

y=9∫

y=0

1

4
y2ey

3

dy

=
1

12
ey

3

∣∣∣∣
y=9

y=0

=
1

12

(
e729 − 1

)
.

1

Figure 3: Region of intergation Q.7.

Thus, the required integral in the reverse order is given by

∫ 3

0

∫ 9

x2
x3ey

3
dydx =

∫ 9

0

∫ √y

0
x3ey

3
dxdy =

∫ 9

0

(
1

4
x4ey

3

) ∣∣∣
√
y

0
dy =

1

4

∫ 9

0
y2ey

3
dy

=
1

12
ey

3
∣∣∣
9

0
=

1

12

(
e729 − 1

)
.

Q.8 Suppose that a semicircular wire has the equation y =
√

25− x2 and that its mass density is
δ(x, y) = 15−y. Find the mass of the wire using line integrals over the curve C representing
the wire and the standard parametrization of the semi-circle, i.e., x(θ) = r cos θ and y(θ) =
r sin θ with parameter θ.

Sol. The mass M of the wire can be expressed as the line integral

M =

∫

C
δ(x, y)ds =

∫

C
(15− y)ds

along the semicircle C. To evaluate this integral, we will express C parametrically as

x = 5 cos θ, y = 5 sin θ, (0 ≤ θ ≤ π).

Note also that the displacement and consequently the velocity vector of the point moving
along the curve C are given by r(θ) := 5 cos θi + 5 sin θj, v(θ) := −5 sin θi + 5 cos θj.
Consequently, |v(θ)| =

√
(−5 sin θ)2 + (5 cos θ)2 =

√
25(sin θ2 + cos θ2) = 5. Therefore, we

have

M =

∫

C
(15− y)ds =

∫ π

0
(15− 5 sin θ)|v(θ)|dθ =

∫ π

0
(15− 5 sin θ)5dθ = 25

[
3θ − sin θ

]∣∣∣
π

0
= 75π − 50.

“If you believe it will work out, you’ll see opportunities. If you believe it won’t, you
will see obstacles.” — Wayne Dyer
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