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Suppose that x = 2u + v, y = u/v and z = e®¥. Use an appropriate form of the chain rule
to find 0z/0u and 0z/0v.
We have
0z 0z0y 0z0y Y 1 x
T TR0 L TR et (2 ey (2] = (2 Z) ey
ou 8x8u+8y8u (ye™) (2) + (we™) v (y—l—v)e
_ (2 2u N euroe) _ (A1) et /)
v v v ’
and
0z 0z0y 0z0y y U TU
T2 _UETI L TETT e (1 T (2 = (g — 22 o7y
v 8x8v+8y8v (ye™) (1) + (ze )< v2) ( v2)6
_ <u C (2u+t v)u) (Qutv)(ufv) _ _ <2U2> o(2utv)(u/v)
2 2 :
v v v
Locate all the relative extrema and saddle points of f(x,y) = 322 — 2zy + y* — 8y.

Since fz(x,y) = 6z — 2y and fy(z,y) = —2x + 2y — 8, the critical points of f satisfy the
equations
fz(:v,y):6x—2y:(), fy(x,y)=—2x+2y—8:()

Solving these equations for  and y yields x = 2 and y = 6, so (2,6) is the only critical
point.

We also need the second-order partial derivatives in order to apply the second derivative
test for extrema and saddle points. We have

Jrz(z,y) = 6, fyy(JUay) =2, fmy(xvy) = -2

At the point (2,6), we have
D = fra(2,6)fyy(2,6) — £7,(2,6) = 6(2) — (=2)* =8 >0,

and
fzz(2,6) =6 > 0.

So, f has a relative minimum at (2, 6) by second derivative test.

Suppose that the temperature at a point (x,y) on a metal plate is T'(x,y) = 4% — 4xy +y>.
An ant, walking on the plate, traverses a circle of radius 5 centered at the origin. What are
the highest and lowest temperatures encountered by the ant?
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The ant is constrained to traverse in a circle of radius 5. Therefore, assuming the center
of the circle to be the origin, the constraint equation is 22 + y> = 25. Thus, the objective
function is T'(z,y) = 4% — 4xy and the constraint function is g(z,y) = 22 + y?> — 25. By
using method of Lagrange multipliers, we set VI' = AVg, i.e.,

(8x — 4y)i — 4xj = A\(2xi + 2yj).

In components, we have 8x — 4y = 22\ and —4x + 2y = 2y\. Note that x and y cannot be
zero, because if © = 0 then y = 0 and conversely; however, 22 + y?> = 25. Therefore, both
x and y are non-zero. Thus, A = (4x — 2y)/x and A = (—2z + y)/y from the component
equations above. So

(4o —2y)/x = (—2x +y))y <= 22°+32y—2°=0 <= (2x—y)(z+2y)=0.

Therefore, either y = 2z or x = —2y. If y = 22 then 2% + (22)% = 25, ie., 2 = £/5. If
r = —2y then (—2y)% +1? = 25, i.e., y = £1/5. Therefore, the possible points of extrema

are (—\/5, —2\/5), (\/5,2\/5), (—2\/5, \@) and (2\/5, —\/5) Since
T(—V5,-2V5) =0=T(v5,2V5) and T(-2V5,V5) =125 =T(2V5,—V5).

The highest temperature is 125 and the lowest temperature is 0 subject to the constraint
2 2
x4+ y* = 25.

The rooftop of a building is designed in the form of an inclined plane through the point
(4,3,0) and parallel to the beams represented by the vectors i + k and 2j — k. Find the
equation of the rooftop.

Since the plane is parallel to the beam vectors i + k and 2j — k. The normal to the plane is

also normal to the beams. Therefore, a normal vector (denoted n) on the rooftop is given
by

k

n=(i+k)x((2j—-k) = 1 ] =-2i+j+2k
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Let P(z,y,z) be an arbitrary point on the plane representing the rooftop passing through
the point Py(4,3,0). Then, the equation of the rooftop is given by

n-PP=0=—= —2x—-4)+1(y—3)+2(:-0)=0 = —2z+y+2z=—5.
This is the required equations.

Find the triple integral of f(x,y,z) = z over the slice of the hemisphere shown in Figure 1
using the triangular “shadow” in the xy-plane.



Figure 1: Hemisphere and the shadow region.

Sol. Note that the slice of the hemisphere in Figure 1 is bounded by the planes y = 3z, x = 0
and z = 0 and by the surface z = \/9 — y2. Moreover the shadow region is defined by the
triangle in the xy-plane bounded by the lines y = 3z, y = 3 and © = 0. Therefore, by
method of slicing a vertical line parallel to z-axis will enter the hemispherical domain from
z = 0 and leave it from the surface z = /9 — y2. If we slice the shadow by lines parallel
to y-axis, then such lines will render the z- and y-limits as z € [0,1] and y € [3z,3]. (We
could also have chosen to slice the shadow region by lines parallel to z-axis, then the z- and
y- limits will be be y € [0, 3] and x € [0,y/3]).

Therefore, the required triple integral of f(z,y,2) = z over the hemisphere is
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Q.6 Express the integral I = / / xdxdy as a polar integral.
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Sol. First we sketch the integration region in Figure 2. The outer integration limit is y € [0, 2]
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Figure 2: Region of intergation in cartesian (left) and polar coordinates (right).

and the for every y, the x coordinate satisfies x € [0,y]. The upper limit for = is the curve
y = x. It is simple to describe this domain in polar coordinates since y = = is 6 = 7, the
line x = 0 is 6 = 5. From the right figure in 2, one can easily see that the lower integration
limit in 7 is 7 = 0 and the upper limit is 2 = y = rsinf or r = 2/sin . Finally, recall that

x =rcosf and y = rsin . Therefore, we conclude that

2 ry w/2 (2/sin€
/ / xrdxdy = / / (r cos O)rdrdf.
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Q.7 Evaluate the integral / / mgeysdydaf by first reversing the order of integration.
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Sol. If we tried to integrate with respect to y first, we cannot do it. Notice first that the region
of double integration has two properties: 0 < x < 3 and x? < y < 9. We then can draw the
region (see, Figure 3).

By the method of slicing, we invade the region by arbitrary horizontal line that gives us the
y-limits 0 <y < 9. One the other hand an arbitrary horizontal line meets the region at two
points = 0 and when 22 = y or simply =z = VY (we consider the positive root because
we are handling the region in the first quadrant). Therefore, the z- limits are x = 0 and

T =./y.



Figure 3: Region of intergation Q.7.

Thus, the required integral in the reverse order is given by

3 9 9 VT 9 /1 1 /9
/ / x3ey3dydx:/ / :E3ey3dxdy:/ <x4ey3> ’\@dy: / ygeygdy
0 Ja2 o Jo o \4 0 4 Jo
1 39

_i 729
0—12(6 1).

Y

Q.8 Suppose that a semicircular wire has the equation y = v/25 — 22 and that its mass density is
d(z,y) = 15 —y. Find the mass of the wire using line integrals over the curve C representing
the wire and the standard parametrization of the semi-circle, i.e., x(8) = r cos§ and y(0) =
rsin @ with parameter 6.

Sol. The mass M of the wire can be expressed as the line integral

M:/C(S(:c,y)ds:/c(w—y)ds

along the semicircle C'. To evaluate this integral, we will express C' parametrically as

x = 5cosb, y =5sinf, (0<0<m).
Note also that the displacement and consequently the velocity vector of the point moving
along the curve C are given by r(f) := 5cosfi + 5sin6j, v(0) := —5sinbi + 5 cos bj.
Consequently, [v(0)| = v/(=5sin6)2 + (5cos )2 = /25(sin §2 + cos §2) = 5. Therefore, we
have

M= / (15 — y)ds = / (15 — 5sin6)[v(8)do = / (15 — 5sinf)5do = 25[39 ~sin 9] )Z — 757 — 50.
C 0 0

“If you believe it will work out, you’ll see opportunities. If you believe it won’t, you
will see obstacles.” — Wayne Dyer



