Final Exam, (MATH-455 Integral Equations)
Due Date: June 29, 2020, Time: 3hrs, Marks: 45

Q1. Consider the Volterra integral equations

$$
\begin{equation*}
\phi(s)=s^{2}+\int_{0}^{s}(s-t) \phi(t) d t, \quad s \in[0,1] . \tag{1}
\end{equation*}
$$

(a) Find an exact solution to equation (1).
(b) Find Neumann series solution of (1) using the method of successive approximations and verify with the exact solution.
(c) Discuss the convergence of the series solution.
(d) The kernel operator of the integral equation (1) is square integrable on $[0,1]$. What effects on the solution do you anticipate had it not been L^{2} or a bounded linear operator in the Hilbert space? Explain briefly.
[2 Marks]
Q2. Consider the integral equation

$$
\int_{0}^{1} K(x, y) u(y)=1, \quad K(x, y):= \begin{cases}x y+(x-y)^{-1 / 2}, & x>y, \tag{2}\\ x y, & x<y .\end{cases}
$$

(a) Convert (2) into an Abel's equation treating

$$
\begin{equation*}
\beta:=\int_{0}^{1} y u(y) d y, \tag{3}
\end{equation*}
$$

as a known constant initially.
[4 Marks]
(b) Solve the resulting equation using Laplace transform (Hint: Do not follow the procedure in the reference book. Instead, make use of the Laplace transform and invoke the formula $\mathcal{L}[1 / \sqrt{x}]=\sqrt{\pi / s})$.
[5 Marks]
(c) Use the expression of the solution obtained in the previous part to evaluate constant β and finally furnish the solution to (2).
(d) Can we convert (2) to an integral equation of the second kind? Explain briefly.
[2 Marks]
Q3. Consider the integral equation

$$
\begin{equation*}
\psi(x)=f(x)+\lambda \int_{x}^{\infty} e^{a(x-y)} \psi(y) d y, \quad a>0, x \in \mathbb{R} . \tag{4}
\end{equation*}
$$

(a) Is the kernel of equation (4) square-integrable? Justify your response mathematically.
[5 Marks]
(b) Convert the homogeneous equation associated to (4) (i.e., $f \equiv 0$) to a differential equation and determine the value(s) of λ for which the resulting ODE has non-trivial solution(s) if any.
[5 Marks]
(c) A requirement on the solution to equation (4) and the associated homogeneous equation is that the integral on the RHS should converge, i.e.,

$$
\begin{equation*}
\int_{x}^{\infty} e^{a(x-y)} \psi(y)<\infty \tag{5}
\end{equation*}
$$

Use this requirement and the solution obtained in the previous part to determine the spectrum of (4). Is the spectrum discrete or continuous?

[^0]
[^0]: "Many of life's failures are people who did not realise how close they were to success when they gave up." - Thomas Edison.

