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RESUM E

Dans cette note, nous présentons un algorithme de conjugaison de phase pour la
reconstruction d'une source étendue a partir de mesures de champ électrique obtenues
pour un ensemble fini de fréquences. Nous commengons par introduire et analyser une
fonctionnelle d’'imagerie a partir de mesures obtenues pour un intervalle de fréquences.
Ensuite, nous proposons une régularisation [y d'une telle fonctionnelle d’imagerie afin
d'éliminer les artefacts dus a I'aspect discret et limité des fréquences utilisées.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Inverse source problems have been the subject of numerous studies over the recent past due to a plethora of applications
in science and engineering, especially in biomedical imaging, non-destructive testing and prospecting geophysics (see, e.g.,
[1,2,5,3,4]). Several frameworks to recover spatial and temporal support of the acoustic, elastic and electromagnetic sources
in time and frequency domains have been developed [3,4,13,14], including time reversal and phase conjugation algorithms
[8,10-12].

The simplicity and robustness of time reversal and phase conjugation algorithms motivate their application to dealing
with source localization problems. If the sources are spatially punctual (Dirac delta sources), a single measurement of the
emitted wave over an imaging surface on single time or frequency is sufficient to locate the source position. However, when
the sources are extended in space, the problem is well-posed when the available data are collected over an interval of time
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[0, T] for sufficiently large T > 0 or over a large frequency bandwidth. The data collected at each time or frequency contain
useful information about an extended source that can be retrieved on re-emission of the captured wave after time reversal
or phase conjugation. The superposition of all the retrieved information provides the support of extended sources with a
resolution limited by Rayleigh’s diffraction criterion [2,5].

In real physical configurations, the only measurements available are made over a finite set of frequencies or time in-
stances. The lack of complete information induces noise in the reconstruction of the extended source. All one can get is an
initial guess of the support of a source.

This work aims at recovering a radiating electromagnetic source using boundary measurements of the electric field over
a finite set of frequencies using a phase conjugation algorithm blended with fast iterative shrinkage thresholding algorithm with
backtracking of Beck and Teboulle [7] for [;-regularization. First a phase conjugation imaging function using a full frequency
bandwidth is established to recover the spatial support of the source. Then it is adopted to the case of a finite number of
frequencies. If broadband frequency information is available at hand, the finite frequency phase conjugation function yields
an initial guess of the spatial support of the current source, which is subsequently optimized using [; -regularization.

2. Formulation of the problem and preliminaries

Let £2 C R be an open bounded domain with a Lipschitz boundary I". Consider the time-harmonic Maxwell’s equations

V x E(x, w) = iowoH(®X, o), xeR3, 0
V x H(x, w) + iwegE(X, ) =J(x), xeR3,

subject to the Silver-Miiller radiation conditions
lim |x|(y/oH x & — \/€0E) =0, where & :=x/|x], (2)

|%]— 00

with frequency pulsation w, electric permittivity €y > 0 and magnetic permeability (o > 0, where E and H are the time-
harmonic electric and magnetic fields, respectively. Here J(x) € R3 is the current source density, assumed to be sufficiently
smooth and compactly supported in 2, that is, supp{J} CC £2.

Define the admissible set of frequencies and the boundary data

W= (a)n)ﬁ’=1 and d(x,w) =Ex,w) forall (x,w)e " xR. (3)

Then, the ultimate goal of this work is to tackle the following problem:

Given dyy :=d| )y on broadband frequencies (i.e. for N sufficiently large), identify supp{J} of current source J.

We refer to ko := w./€o/lo as the wave number and co :=1/,/€ofto as the speed in dielectrics. We also let v to be the
outward unit normal to I". By (1),

V x V x E—kQE=iope)x), xcR>. (4)

Let G§(x, w) be the outgoing electric-electric Green function for Maxwell's equations (1), that is,

V x V x G (%, w) — kgGS (%, w) = iwpoldo(x), xeR3, (5)

where §o(x) is the Dirac mass at x = 0. The following identities are the key ingredients to elucidate the localization and
resolution limits of the imaging functional proposed in the next section. The variants of the identity in Lemma 2.1 can be
found in [8,9] and [6].

Lemma 2.1 (Electromagnetic Helmholtz—Kirchhoff identity). Let B(0, R) be an open ball in R3 with radius R, center 0 and boundary
dB(0, R). Then, for all x, y € R3,

. lim / Gy (x— £, )G (¢ —y, w)do(§) = ,uoco&}te{GSe(x -y, a))},
—+00
9B(0,R)

where the superposed bar indicates a complex conjugate.

Lemma2.2. Forallx,y e R3, x £y,

e_ofme{cge(x—y, @)} do = 5¢(y)L.
21
R
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Proof. Let G be the solution to
192G ~ 3

C—Zm(x,t; Y. O)+VXVXGRt;y,7T) ==X DI, xyeR’ t>71, (6)
0

such that for all constant vectors p € R>

_ G
Gx,t;y, T)p=0= W(x,t; y,. T)p forallx,y eR3 t<1

and let G(x, y, w)p be the Fourier transform of 6(x, t; y,0)p. Then, integrating (6) over [t~, T], using the causality condi-
tions and continuity of Gp away from t = t, we have:

=—c3sy®p, xyeR® x#y.

t=1t

aa(x t;y,7)
ot % ;Y. TP
Consequently, by Parseval’s identity

/ iwG(x, y, w)pdw = 2c3 8, (X)p / So(w) dw = 2378y (X)p. (7)
R R

Finally, relation (7) leads to the conclusion together with G§?(x — y, w)p = —iwuoG(x, y, w)p and by varying and choosing
p as the canonical basis vectors in R3. O

3. Source localization with a finite set of frequencies

As a first step towards the ultimate goal, we find the spatial support of the current source, supp{J}, from data d(x, w)
with @ € R. For a fixed w € R, define the adjoint field E* to be the solution to

V x V x E*(X, w) — kKE* (%, ©) = iopod(®, 0)5r (X), (X, @) € R> x R, (8)
where & is the Dirac mass at the boundary I". The phase conjugation functional is defined by
€
Z(x) = —° / E*(x, 0)dw, VxeR3. (9)
2T Cofo
R

Then, Z(x) yields supp{J} approximately. In fact, we have the following theorem.

Theorem 3.1. For x € 2 sufficiently far from I compared to the wavelength,

Z(x) =]Jx).
Proof. Since ] is supported compactly inside £2, for all x € £2 and y € I, we have:
E*(x, w)=/68e(y—x, w)d(y,w)do(y) and d(y,w)Z/GSe(y—z, w)J(2) dz|yer. (10)
r Q

Therefore, by using (10) in (9), we arrive at

Z(x) = 670f/</ G (x—y, )G (y —z,0) do(y)) dw](z) dz.
27 cofho
RIR I

Now, let us invoke the Helmholtz-Kirchhoff identity from Lemma 2.1 and then Lemma 2.2 to get:

I(x):/(;—;/me{cge(x—z, w)}dw)](z)dz

Rd R
2/5X(Z)](Z) dz =](x). O
Rd

Now, we address the inverse current source problem using boundary data dyy = d(x, )| x)y. Inspired by the functional
7 defined in (9), we define a single frequency functional Z, by (12). However, since we are dealing with a finite set of



920 A. Wahab et al. / C. R. Acad. Sci. Paris, Ser. 1 352 (2014) 917-921

Algorithm 1 Fast iterative-shrinkage thresholding with backtracking.
Require: Set y9>0,n>1,% =0, y; =x9, s1=1.

1: for m>1 do

2: Setim =1, B=nYmn-1.

3:  while £(Tg(ym). 2) > Pp(Tp(Yim): Ym) do

4: Update im =im+ 1, B=0"Yn_1.
5
6

end while

Set ym = B, Xm = Ty Vm)-
7. Update Smi1 = 3(1++v/1+452%), Ypuiq =2m + (=LY ®m — ®n-1), im =0, m=m + 1.
8: end for
returnT: Xm.

frequency measurements, the lack of information over the entire spectrum induces noise and blurring in the reconstruction.
In order to fix the problem, an initial guess to the current source density is identified in the sequel, which is then optimized
providing an improved approximation to supp{J}.

Let 0 < K(} < Kg <...< K(I)V be N wave numbers corresponding to w, € W for n=1,2,---, N. Let us define the adjoint
field E;; corresponding to a fixed frequency wy, € WV to be the solution to

V x V x Ej (2, 0n) — (k§)*Ef (%, 0n) = ion oy ®, 0n)or (®),  (®,0p) €R® xR, (11)
and the single frequency phase conjugation functional by
€0
Tn(X) := ———E; (X, p). (12)
27T Coho

The following lemma holds.

Lemma 3.2. For all x € 2 sufficiently far from I", we have

Tn(X) ~ 26—701 / Ne{Gy(x— y. wn) JJ(») dy.
2

Proof. The proof is similar to that of Theorem 3.1. Indeed, we conclude from Lemma 2.1 and relation
€0

Tn(x) = ——E; (x, wp)
27 coho

- / / G5 (& — X, onGE(y — & o do () dy. O
TTCojo
2 r

Now, the aim is to utilize an [;-regularization to optimize the localization of the current source density. The objective is
to resolve the following optimization problem:

1, (®) = argmin M{J) + R(), (13)
JeRd
where
~ 1 N €0 A~ 2
M) = Z; L) — o / Re{Ge*(x — y, o) J(») dy| . (14)
n= 2
RO =[], (15)

Here the first term M is the data fidelity term and the second term R accounts for the [;-regularization. It is clarified that
A is a regularization parameter controlling the relative weights of the two terms and provides a trade-off between fidelity
to the measurements and noise sensitivity. Here || - | denotes the Euclidean norm in R3.

The direct computations of the solution J, to the minimization problem (13) are not trivial. Thus, in order to obtain J;
explicitly, approximation schemes are indispensable. For this, we follow Beck and Teboulle [7] and use their fast iterative
shrinkage thresholding algorithm with backtracking; see Algorithm 1. This method belongs to the class of split gradient descent
iterative schemes with a global convergence rate O(m~—2), where m is the iteration counter. _

For any y > 0, define the quadratic approximation of the Lagrangian £(J, A) = M(J) + R() by

Py, y) =M +(x—y, VM(y)>+gIIX—y||2+R(X) and 7y (y) :=argmin{P, (x, y)}. (16)

xeRd

where %, y € R? and (-, ) is the usual Euclidean inner product in R3.
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