National University of Technology, Islamabad
Midterm (Calculus II), Spring 2019
BET (Civil), Instructor: Dr. Abdul Wahab Solution-Key

Q. 1 Let the storage dome of the raw-material (mainly lime stone) at the quarry site of Fouji Cement Company be modeled by the function $f(x, y)=\sqrt{4-x^{2}-y^{2}}$. Calculate the domain of f that represents the region in Cartesian coordinates on which the storage dome is constructed. Explain the shape of the contour of the dome on the ground (i.e., the contour curve of f when $c=0$)?
[SLO 1, PLO 1, Marks 3]
Sol. The expression inside the radical must be non-negative, so the domain consists of all ordered pairs satisfying $4-x^{2}-y^{2} \geq 0$. Therefore,

$$
\text { Domain }=\left\{(x, y) \mid \quad x^{2}+y^{2} \leq 4\right\} .
$$

For the level set, we fix $f(x, y)=c=0$. This yields

$$
\sqrt{4-x^{2}-y^{2}}=0 \Longrightarrow 4-x^{2}-y^{2}=0 \Longrightarrow x^{2}+y^{2}=4 .
$$

The shape of the contour of the storage dome is a circle of radius $2 u n i t s$ in $x y$-plane.
Q. 2 A mason wants to decorate a small room with two different styles of marbles. The total cost of the decoration is modeled as $C=C(x, y)=x^{2} y-y^{2}$ where x, y are costs of individual marbles used in the process. At the same time, the prices of both the marbles fluctuate with time as $x=x(t)=e^{t}-\sinh t$ and $y=y(t)=\cosh t$. Calculate the total rate of change of the cost of decoration with time. Express your answer as a function of time.
[SLO 3, PLO 1, Marks 7]
Sol. Using chain rule, we get

$$
\frac{d C}{d t}=\frac{\partial C}{\partial x} \frac{d x}{d t}+\frac{\partial C}{\partial y} \frac{d y}{d t}
$$

It is easy to calculate that

$$
\frac{\partial C}{\partial x}=2 x y, \quad \frac{\partial C}{\partial y}=x^{2}-2 y, \frac{d x}{d t}=e^{t}-\cosh t, \quad \frac{d y}{d t}=\sinh t .
$$

Therefore,

$$
\begin{aligned}
\frac{d C}{d t} & =2 x y\left(e^{t}-\cosh t\right)+\left(x^{2}-2 y\right) \sinh t \\
& =2\left(e^{t}-\sinh t\right) \cosh t\left(e^{t}-\cosh t\right)+\left[\left(e^{t}-\sinh t\right)^{2}-2 \sinh t\right] \sinh t .
\end{aligned}
$$

Q. 3 A flat table, modeled with a plane having equation $2 x+2 y-z=3$ is cut by a blade having equation $3 x+6 z=1$. There is nail in the table at point $(1,1,1)$. How far is the nail from the cutting line generated by the blade on the plane? (Hint: Calculate the shortest distance between the nail and the line of intersection of plane and the blade).
[SLO2, PLO 1, Marks 7]

Sol. We need to find the equation of the line of intersection of the planes $2 x+2 y-z=3$ and $3 x+6 z=1$. Note that the corresponding normals are $\mathbf{n}_{b}=3 \mathbf{i}+6 \mathbf{k}$ and $\mathbf{n}_{t}=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$. Therefore, the line of intersection is parallel to

$$
\mathbf{n}_{t} \times \mathbf{n}_{b}=\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 0 & 6 \\
2 & 2 & -1
\end{array}\right)=-12 \mathbf{i}+15 \mathbf{j}+6 \mathbf{k} .
$$

Now, we need to find a point on the line of intersection. For that, we solve the equations of the planes simultaneously. We multiply the equation of the table by 6 and add to the equation of the blade to get

$$
15 x+12 y=19
$$

As there are infinite many points on the line, we choose only one by fixing $x=0$ and then finding $y=19 / 12$ and ultimately $z=1 / 6$. Therefore, the equation of the line of intersection is $x=-12 t, y=19 / 12+15 t$, and $z=1 / 6+6 t$.
Q. 4 Show that $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{2}$ does not exist. [SLO 1, PLO 1, Marks 5]

Sol. We approach the point $(0,0)$ along the lines $y=k x$ for different $k \in \mathbb{R}$. We have

$$
\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)^{2}=\lim _{(x, k x) \rightarrow(0,0)}\left(\frac{x^{2}-k^{2} x^{2}}{x^{2}+k^{2} x^{2}}\right)^{2}=\lim _{(x, k x) \rightarrow(0,0)}\left(\frac{1-k^{2}}{1+k^{2}}\right)^{2}=\left(\frac{1-k^{2}}{1+k^{2}}\right)^{2} .
$$

This indicates that along different paths, the values do not agree, therefore, the limit does not exist.
Q. 5 Calculate all the second partial derivatives of $z:=x^{2} y^{2} e^{2 x y}$. Also verify the equality of the mixed derivatives.

[SLO 3, PLO 1, Marks 5]

Sol. We have

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =2 x y^{2} e^{2 x y}+2 x^{2} y^{3} e^{2 x y} \\
\frac{\partial^{2} z}{\partial x^{2}} & =2 y^{2} e^{2 x y}+4 x y^{3} e^{2 x y}+4 x y^{3} e^{2 x y}+4 x^{2} y^{4} e^{2 x y} \\
\frac{\partial^{2} z}{\partial y \partial x} & =4 x y e^{2 x y}+4 x^{2} y^{2} e^{2 x y}+6 x^{2} y^{2} e^{2 x y}+4 x^{3} y^{3} e^{2 x y}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial z}{\partial y} & =2 x^{2} y e^{2 x y}+2 x^{3} y^{2} e^{2 x y} \\
\frac{\partial^{2} z}{\partial y^{2}} & =2 x^{2} e^{2 x y}+4 x^{3} y e^{2 x y}+4 x^{3} y e^{2 x y}+4 x^{4} y^{2} e^{2 x y} \\
\frac{\partial^{2} z}{\partial x \partial y} & =4 x y e^{2 x y}+4 x^{2} y^{2} e^{2 x y}+6 x^{2} y^{2} e^{2 x y}+4 x^{3} y^{3} e^{2 x y} .
\end{aligned}
$$

Note that

$$
\frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial^{2} z}{\partial x \partial y}
$$

Q. 6 Calculate the directional derivative of $f(x, y):=e^{x} \cos (\pi y)$ in the direction of

$$
\vec{v}=-\frac{1}{\sqrt{5}} \mathbf{i}+\frac{2}{\sqrt{5}} \mathbf{j}
$$

at point $(0,-1)$.
[SLO 1, PLO 1, Marks 3]
Sol. Since,

$$
\nabla f(x, y)=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}=e^{x} \cos (\pi y) \mathbf{i}-\pi e^{x} \sin (\pi y) \mathbf{j}
$$

Therefore,

$$
\nabla f(0,-1)=e^{0} \cos (-\pi) \mathbf{i}-\pi e^{0} \sin (-\pi) \mathbf{j}=-\mathbf{i} .
$$

Thus, the directional derivative of f in the direction of $\vec{v}=-\frac{1}{\sqrt{5}} \mathbf{i}+\frac{2}{\sqrt{5}} \mathbf{j}$ is

$$
\vec{v} \cdot \nabla f(0,-1)=\left(-\frac{1}{\sqrt{5}} \mathbf{i}+\frac{2}{\sqrt{5}} \mathbf{j}\right) \cdot(-\mathbf{i})=\frac{1}{\sqrt{5}} .
$$

"Many of life's failures are people who did not realize how close they were to success when they gave up." - Thomas A. Edison

