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Mode-matching solution of a scattering problem in flexible
waveguide with abrupt geometric changes
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Abstract. This article is concerned with a flexible waveguide scattering prob-
lem arising in structural acoustics. A mode-matching solution framework is
explained from the perspective of orthogonality relations for analyzing reflec-
tion and transmission of waves in the waveguide with discontinuous material
properties and abrupt geometric changes. The energy flux and power bal-
ance are discussed and the results are elucidated through apposite numerical
experiments.

1. Introduction

A plethora of real world problems in engineering design and structural me-
chanics involves propagation and scattering of acoustic, elastic or electromagnetic
waves in pipes and ducts having abrupt changes in material properties or geometry
[28,35,36]. A typical example is the silencer design for vehicles with an abrupt
change in cross-sectional area and a shielded bounding wall [32]. The noise gener-
ated by mechanical devices such as combustion engines and fans propagates through
the networks of ducts to the outside world. The unwanted sound travels signifi-
cant distance by means of reflection and transmission through the internal walls of
the duct [17]. The localization and control of noise are desirable [1,6,18,31,38].
The understanding of the effect of viscoelastic coating on scattering and reflection
of the probing ultrasonic waves is critical in non-destructive testing of in-service
pipes with possible defects [2, 21, 22]. The ducting systems are frequently used
in aircrafts. In the duct-like structures, such as jet engine intakes modeled with
two dimensional open cavities, the accurate calculation of electromagnetic fields is
of remarkable significance [3–5,7]. Welds, rivets and small physical variations in
the properties of adjacent panels in an aircraft wing give rise to scattering of fluid-
structure coupled waves. It is of vital importance for design engineers to fathom the
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qualitative features of sudden variation in panel depth or the trace of a weld. The
presence of two or more of such phenomena gives rise to the possibility of resonance
that could lead to a structural fatigue. Duct like structures are also widely used in
heating, ventilation and air conditioning (HVAC) systems and the acoustic scatter-
ing in these ducts is a common feature. The later becomes more intriguing when
there occurs an abrupt change in height or in the underlying material properties
[32].

In the recent years, mode-matching (MM) techniques have been devised to
deal with more complicated geometries and the problems involving propagation in
ducts/channels with high order boundary conditions. Such methods were originally
developed to solve canonical problems governed by Laplace or Helmholtz equations
and the duct/channel boundaries described by Dirichlet, Neumann or Robin condi-
tions. The discrete nature of the wavenumber spectrum in such problems allows the
total wave field representation by a superposition of traveling wave modes in each
region of constant duct properties. The analysis of reflection and transmission of
waves in pipes and ducts is therefore performed mostly by matching modes across
the interface at discontinuities in pipe or duct properties.

If the eigenfunctions in each uniform waveguide region form a complete or-
thogonal basis, the orthogonality relations allow the eigenfunction coefficients to
be determined by solving a simple system of linear algebraic equations. The com-
plexity of an orthogonality relation depends not only on the type of boundary that
forms the surface of waveguide but also on the order of field equation. For struc-
tures involving soft, hard or impedance boundaries and at most a second order field
equation, the solution can be computed in terms of an eigenfunction expansion by
virtue of separation of variables. The emerging orthogonality relation is found to
be very simple and the resulting eigen-sub-system turns out to be Sturm-Liouville
(SL). Consequently, in the process of mode-matching across the interface between
two regions, the orthogonality relation renders a well-behaved infinite system of
linear algebraic equations. Therefore, numerous problems involving complicated
geometric structures and material discontinuities in a wide range of applications as-
sociated with water waves, acoustics and electromagnetic theory have been solved
using mode-matching technique wherein orthogonality relations prove to be ex-
tremely useful. We refer the reader, for instance, to the studies done by Lebedev et
al. [27], Evans and Linton [11], Peat [34], Evans and Porter [12], and Dalrymple
and Martin [9].

In contrast, for high-order field equations, separation of variables leads to eigen-
function expansions for which the resulting eigen-systems are no more SL, even with
simple boundary conditions. Moreover, a separable second-order field equation to-
gether with high-order boundary conditions, for example those describing the fluid-
coupled motion of a membrane or elastic plate, give rise to a non-SL problem. The
eigenvalues are defined as the roots of a complicated dispersion relation and the
associated eigenfunctions are not usually orthogonal even with respect to a weight
function. In such a case, a generalized orthognality relation can play a significant
role. For instance, Folk and Herczynski [13, 15] dealt with an elastic system for
which separation of variables leads to a non-SL eigensystem. Albeit, they are able
to derive a generalized orthogonality relation rendering a solution to the problem.
Other examples can be found, for instance, in the investigations made by Nawaz
and Lawrie [30], Junger and Feit [19], Afzal et al. [1], and Nawaz et al. [29].
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It is worthwhile precising that the derivation of an appropriate orthogonality
relation is not stand-alone sufficient to completely determine a solution to the prob-
lems involving high order boundary conditions. An additional requirement is the
choice of appropriate edge conditions at the junction of discontinuity. A practical
and convenient mean of imposing the edge conditions is critical.

The aim of this article is to discuss a boundary value problem emerging from
the scattering of an acoustic wave in a two dimensional waveguide consisting of
two semi-infinite duct sections and the analysis of associated non-SL systems from
the perspectives of orthogonality relations (ORs). In particular, the process of
mode matching for analyzing reflection and transmission of the incident waves is
described, and the effects of rigid and flexible walls are taken into account. The
expressions for power and energy flux for the flexible walls are discussed and are
elucidated through apposite numerical simulations.

The rest of the article is arranged in following order. Section 2 is dedicated to
mathematical formulation of the scattering problem. Its mode-matching solution
by invoking appropriate ORs is presented in Section 3. The expressions for energy
flux and power balance are derived in Section 4. Finally, a few numerical tests are
performed to analyze the performance of the mode-matching framework in Section
5.

2. Mathematical formulation

Consider a two-dimensional infinite waveguide consisting of two semi-infinite
duct regions (−∞, 0) × [0, a] and (0,∞) × [h, b] where h ≤ a ≤ b. The duct
regions are respectively bounded below by acoustically rigid walls at y = 0 and
y = h. The first duct section is bounded above by a membrane at (−∞, 0)× {a},
whereas the second one is bounded above by an acoustically rigid or a soft wall at
(0,∞)×{b}. The duct regions are mutually connected by means of two strips lying
at {0} × [0, h] and {0} × [d, b], where d ≤ a ≤ b. The properties along the strips
are chosen to be discontinuous. The inner side of the lower strip, {0−} × (0, h), is
acoustically rigid whereas the outer side, {0+} × (0, h), is in vacuo. The sides of
flanged strip, {0−}×(d, a) and {0+}×(d, b), are chosen to be acoustically rigid and
soft respectively, whereas {0−} × (a, b) is in vacuo. Moreover, the region outside
the duct is also considered in vacuo. The physical configuration of the duct is
delineated in Figure 1.

Figure 1. Duct geometry.
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Assume that the waveguide is loaded with a compressible fluid. Let ψtot(x, y, t)
be the transient fluid velocity potential in the waveguide satisfying the wave equa-
tion

(2.1)
∂2ψtot

∂x2 +
∂2ψtot

∂y2
=

1

c2
∂2ψtot

∂t
2 ,

where (x, y) are the Cartesian coordinates, t is the time variable and c is the sound
speed. Let the incident forcing be time harmonic, thereby letting the transient
velocity potential ψtot to be expressed as

(2.2) ψtot(x, y, t) = �e
{
Ψ(x, y)e−iωt

}
,

where ω is the frequency pulsation. The time harmonic fluid velocity potential
Ψ(x, y), on suppressing the time dependence in (2.1) by virtue of (2.2), satisfies the
Helmholtz equation

(2.3)

(
∂2

∂x2 +
∂2

∂y2
+ k2

)
Ψ(x, y) = 0,

where k = ω/c is coined as wavenumber.
For the sake of convenience, the problem (2.3) can be non-dimensionalized with

respect to the length scale 1/k and the time scale 1/ω using transformations x = kx,
y = ky and t = ωt. The non-dimensional velocity potential ψ(x, y) then satisfies
the equation

(2.4)
(
∇2 + 1

)
ψ(x, y) = 0

where

(2.5) ψ(x, y) =

{
ψ1(x, y), ∀(x, y) ∈ (−∞, 0)× (0, a),

ψ2(x, y), ∀(x, y) ∈ (0,+∞)× (h, b).

Hereafter, a, b, d and h denote the non-dimensional lengths corresponding to a, b,
d and h respectively.

The relevant conditions for rigid horizontal lower boundaries are given by

(2.6)
∂ψ

∂y
= 0, (x, y) ∈ R× {0, h}.

The boundary condition associated with the upper membrane is given by

(2.7)

(
∂2

∂x2
+ μ2

)
ψ1y + αψ1 = 0, (x, y) ∈ (−∞, 0)× {a},

wherein the non-dimensional parameters μ and α are the (in vacuo) membrane
wavenumber and the (in vacuo) fluid loading parameter respectively, defined by

(2.8) μ =
c

cm
and α =

ω2ρ

Tk3
.

In above, T denotes the membrane tension per unit length (in the normal direction)
and cm = T/ρm is the speed of waves (in vacuo) on the membrane where ρm is the
membrane mass per unit area, and ρ is the compressible fluid density [39]. The
upper boundary of the outlet duct is assumed to be either acoustically rigid or soft.
The boundary condition corresponding to upper rigid wall is given by

(2.9)
∂ψ2

∂y
= 0, (x, y) ∈ (0,∞)× {b},
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while that for the case of upper soft wall is

(2.10) ψ2 = 0, (x, y) ∈ (0,∞)× {b}.
At x = 0−, the rigid vertical strip is such that

(2.11)
∂ψ2

∂x
= 0, y ∈ (0, h).

The rigid and soft sides of the flange junction are defined in terms of the conditions

(2.12)
∂ψ2

∂x
= 0, x = 0− y ∈ (d, a),

and

(2.13) ψ2 = 0, x = 0+ y ∈ (d, b).

At the matching interface, {0}×[h, d] (known as the aperture), the fluid pressure
and the normal component of velocity are continuous, that is

(2.14)
∂ψ1

∂x
=

⎧⎪⎪⎨
⎪⎪⎩
0, (x, y) ∈ {0} × (0, h),
∂ψ2

∂x
, (x, y) ∈ {0} × (h, d),

0, (x, y) ∈ {0} × (d, a),

and

(2.15) ψ2 =

{
ψ1, (x, y) ∈ {0} × (h, d),

0, (x, y) ∈ {0} × (d, b).

In addition, an edge condition will be required at the corner where the membrane
is connected with rigid vertical wall. The edge condition does not only ensure
the uniqueness of the solution but also describes how the membrane and rigid
vertical surface are connected. The choice of edge conditions can significantly alter
the scattered field. We refer, for instance, to the articles [8, 25, 33] for further
discussion and a comprehensive list of appropriate edge conditions. In the sequel,
we choose a zero displacement edge condition, that is,

(2.16)
∂ψ1

∂y
= 0, x = 0, y = a.

The aim of the next section is to resolve the boundary value problem (2.4)–
(2.16) using a mode-matching technique. In order to do so, a generalized orthogo-
nality relation will be formulated.

3. Mode-matching solution

Consider a time harmonic incident wave consisting of an arbitrary duct mode
ψi
1�(x, y) (for � ∈ {0, 1}) propagating from negative x − axis towards x = 0. The

counter � is considered to incorporate two distinct incident duct modes. It assumes
the values 0 or 1 according to the fundamental mode or the first higher mode inci-
dence respectively. At x = 0, the incident wave interacts with the vertical interfaces
and scatters into an infinite number of reflected modes ψr

1(x, y) and transmitted
modes ψt

2(x, y). Then, the fluid velocity potentials in two duct regions are given by

ψ1(x, y) =ψi
1�(x, y) + ψr

1(x, y), � ∈ {0, 1},(3.1)

ψ2(x, y) =ψt
2(x, y).(3.2)
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The above representation together with (2.4)-(2.7), yields the eigenfunction expan-
sion form of the velocity potentials as

ψi
1�(x, y) =F�Y

1(τ�, y)e
iη�x,(3.3)

ψr
1(x, y) =

∞∑
n=0

AnY
1(τn, y)e

−iηnx,(3.4)

ψt
2(x, y) =

∞∑
n=0

BnY
2(γn, y)e

isnx,(3.5)

where Y 1(τn, y) = cosh(τny) and Y 2(γn, y) = cos(γn(y−h)) are the eigenfunctions.

The incident field in (3.3) involves the forcing F� =
√
α/C�s� (where the quantity

C� will be precised later on) chosen for the algebraic convenience and to ensure

that the incident power is unity. The quantities ηn =
√
τ2n + 1 and sn =

√
1− γ2

n

are the wave numbers of nth reflected and transmitted modes respectively. Their
values can be real or pure imaginary, depending upon the values of τn and γn. The
quantities γn are the eigenvalues in the duct section [0,∞]× (h, b). For rigid upper
boundary

(3.6) γn =
nπ

b− h
, n = 0, 1, 2, · · · ,

whereas, for soft upper wall, we have

(3.7) γn =
(n+ 1/2)π

(b− h)
, n = 0, 1, 2, · · · .

The corresponding eigenfunctions Y 2(γn, y) (for n = 0, 1, 2, · · · ) are orthogonal
in nature and are categorized in well known SL-system. The quantities τn (for
n = 0, 1, 2, · · · ) are the eigenvalues associated with the eigenfunctions Y 1(τn, y)
and satisfy the dispersion relation

(3.8) (τ2n + 1− μ2)τn sinh(τna)− α cosh(τna) = 0,

that can be solved numerically for τn.
The underlying eigen-system is non-SL in nature and the use of classical ORs

does not lead to an accurate solution of the problem. Therefore, one requires to
establish the related orthogonal properties. The problem considered herein involves
membrane bounded duct section (−∞, 0)×(0, a) in which the eigenfunctions satisfy
the generalized ORs

(3.9) α

∫ a

0

Y 1(τm, a)Y 1(τn, a)dy + Y 1′(τm, a)Y 1′(τn, a) = Cmδmn,

where

(3.10) Cn :=
[
Y 1′(τn, a)

]2
+ α

∫ a

0

[Y 1(τn, a)]
2dy.

Here δmn is the Kronecker’s delta function. It is important to note that the eigen-
functions Y 1(τn, a), for n = 0, 1, 2, · · · , are linearly dependent for flexibly bounded
ducts. Indeed, for membrane bounded ducts, Y 1(τn, a) satisfies

(3.11)

∞∑
n=0

Y 1′(τn, a)Y
1(τn, y)

Cn
= 0, y ∈ [0, a],
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along with identity

(3.12)
∞∑

n=0

[Y 1′(τn, a)]
2

Cn
= 1.

The analytic proves of generalized ORs can be found in [23]. It is well known that
the number of linearly dependent sums is always equal to half of the order of highest
derivative involved in the boundary conditions [23,26, 39]. That is, the number
of edge conditions imposed at the corners of the boundary are half of the order of
boundary conditions. Since for the case of membrane bounded duct the highest
derivative involved is of second order, therefore one edge condition is imposed at
the membrane edge connecting it to the vertical flange.

Having obtained well defined orthogonal properties, the scattered modes coef-
ficients (An Bn) (for n = 0, 1, 2, · · · ) can be found by invoking matching conditions
along with edge condition (2.16). In fact, using (3.1)-(3.8) into (2.14), it is straight
forward to obtain

(3.13) F�η�Y
1(τn, y)−

∞∑
n=0

AnηnY
1(τn, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, y ∈ (0, h),
∞∑

n=0

BnsnY
2(γn, y), y ∈ (h, d),

0 y ∈ (d, a).

Now, multiplying above expression with αY 1(τm, y), integrating over (0, a) and
invoking orthogonality relation (3.9), we get

(3.14) Am =
F�η�C�δm�

ηmCm
− iY 1′(τm, a)

ηmCm
E − α

ηmCm

∞∑
n=0

BnsnRmn,

where

(3.15) E = ψ1xy(0, a),

and

(3.16) Rmn =

∫ d

h

Y 1(τm, y)Y 2(γn, y)dy.

Note that E is an arbitrary constant which can be fixed by means of the edge
condition (2.16). In order to do so, we multiply equation (3.14) by Y 1′(τm, a) and
sum over m to get

(3.17)
∞∑

m=0

AmY 1′(τm, a) = F�Y
1′(τ�, a)− iSE − α

∞∑
n=0

Bnsn

∞∑
m=0

Y 1′(τm, a)Rmn

ηmCm
,

where

(3.18) S =

∞∑
m=0

[Y 1′(τm, a)]2

ηmCm
.

This, together with (2.16), renders

(3.19) E =
2iF�Y

1′(τ�, a)

S
− iα

S

∞∑
n=0

Bnsn

∞∑
m=0

Y 1′(τm, a)Rmn

ηmCm
.
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Let us now obtain the expressions for Bn. The continuity of pressure (2.15)
reveals that

(3.20)

∞∑
n=0

BnY
2(τn, y) =

⎧⎪⎨
⎪⎩
F�Y

1(τn, y) +

∞∑
n=0

AnY
1(τn, y), y ∈ (h, d),

0, y ∈ (d, b).

On multiplying with Y 2(γm, y), integrating over (h, b) and using standard orthog-
onality relation, we then obtain for all n = 0, 1, 2, · · · ,

(3.21) Bm =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

εm(b− h)

{
F�Rn� +

∞∑
n=0

AnRnm

}
, γn =

nπ

b− h
,

2

(b− h)

{
F�Rn� +

∞∑
n=0

AnRnm

}
, γn =

(n+ 1/2)π

(b− h)
,

where εm = 2 when m = 0 and εm = 1 otherwise.

4. Expressions for energy flux and power balance

The understanding of the energy flux is important to measure the accuracy
and convergence of the approximate solution. Moreover, it provides a physical
insight of the boundary value problem in terms of reflected and transmitted powers.
In this section, we briefly recall the expressions of energy fluxes in different duct
regions. It is worthwhile precising that the presented solution should obey the
power conservation law, that is, the power fed into the system must be equal to the
sum of reflected and transmitted power under adiabatic conditions.

In the problem under consideration, the power fed into the system will transfer
through compressible fluid in the duct and through the walls of the duct. The
energy flux in the fluid present inside the flexible duct of height (p− l), l ∈ {0, h},
and p ∈ {a,b}, in terms of non-dimensional time harmonic fluid velocity potential
is defined by

(4.1)
∂E
∂t

∣∣∣
fluid

= �e
{
i

∫ p

l

ψ

(
∂ψ

∂x

)∗
dy

}
,

where superposed asterisk (∗) denotes the transition to complex conjugate [19,39].
If the duct is bounded by rigid or soft surface then the energy flux along the
boundaries becomes zero. However, if the bounding surface is flexible, such as the
membrane at (−∞, 0)× {a}, the energy flux is non-zero. In this case, energy flux
per unit length in z−direction is defined by

(4.2)
∂E
∂t

∣∣∣
memb

= �e
{

i

α

(
∂ψ1

∂y

)(
∂2ψ1

∂x∂y

)∗}
at y = a.

In order to calculate the incident power, we first substitute the incident field
ψi
1�(x, y) in (4.1) to obtain the power traveling through fluid by

Pinc

∣∣
fluid

= �e
{
1

α
F�F

∗
� η

∗
� e

i(η�−η∗
� )xα

∫ a

0

Y 1(τ�, y)Y
1(τ�, y)dy

}
.
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By virtue of OR (3.9) for m = n = �, Pinc

∣∣
fluid

becomes

(4.3) Pinc

∣∣
fluid

= �e
{
1

α
F�F

∗
� η

∗
�C�e

i(η�−η∗
� )x − 1

α
F�F

∗
� η

∗
� e

i(η�−η∗
� )x

� [Y 1′(τ�, a)]
2

}
.

Now, recall that η� is either real or pure imaginary depending on the value
of τ� =

√
η2� − 1 for a non-SL system [24]. Therefore only real values of η� are

retained in (4.3) to get

(4.4) Pinc

∣∣
fluid

= �e
{
1

α
F 2
� η�C� −

1

α
F 2
� η�[Y

1′(τ�, a)]
2

}
.

Since, F� =
√
α/η�C�, we have

(4.5) Pinc

∣∣
fluid

= �e
{
1− 1

α
F 2
� η�[Y

1′(τ�, a)]
2

}
.

Similarly, using the incident field ψi
1�(x, y) in (4.2), the power traveling along

the membrane is given by

(4.6) Pinc

∣∣
memb

= �e
{
1

α
F 2
� η�[Y

1′(τ�, a)]
2

}
,

confirming that the total incident power is

Pinc = Pinc

∣∣
fluid

+ Pinc

∣∣
memb

= 1.

Likewise, the expression for reflected power can be calculated by considering
the reflected field ψr

1(x, y). The power reflected through fluid appears to be

Pref

∣∣
fluid

= �e
{
1

α

∞∑
n=0

∞∑
m=0

AnA
∗
mη∗me−i(ηn−η∗

m)xα

∫ a

0

Y 1(τm, y)Y 1(τn, a)dy

}
,

which by virtue of (3.9) simplifies to

(4.7) Pref

∣∣
fluid

= �e
{
1

α

∞∑
n=0

|An|2 ηnCn − 1

α

∞∑
n=0

|An|2 ηn[Y 1′(τn, a)]
2

}
.

On the other hand, the reflected field ψr
1(x, y) together with (4.2) provides the

power reflected through membrane by

(4.8) Pref

∣∣
memb

= �e
{
1

α

∞∑
n=0

|An|2 ηn[Y 1′(τn, a)]
2

}
.

Since the total reflected power is

Pref = Pref

∣∣
fluid

+ Pref

∣∣
memb

,

therefore,

(4.9) Pref = �e
{
1

α

∞∑
n=0

|An|2 ηnCn

}
.
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Finally, the transmitted power can be calculated by using (3.21) into (4.1) as

(4.10) Ptrans =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b− h

2

∞∑
n=0

|Bn|2 snεn, γn =
nπ

b− h
,

b− h

2

∞∑
n=0

|Bn|2 sn, γn =
(n+ 1/2)π

(b− h)
,

for n = 0, 1, 2, · · · .
To conclude this section, we precise again that the power balance must hold

under adiabatic conditions, that is, the energy flux fed into the system must be
equal to the sum of reflected and transmitted powers. Since the incident power is
normalized to unity, we must have

(4.11) Pref + Ptrans = 1.

5. Numerical results and discussion

The aim in this section is to verify numerically the convergence of the mode-
matching solution to the non-SL problem undertaken. Theoretical convergence
analysis can be performed following arguments in [24]. The equations (3.14) and
(3.21) are truncated at N terms for m = 0, 1, . . . N − 1 and the truncated solution
is hereafter used to check the accuracy of presented algebra and distribution of
energy flux. This not only validates the proposed solution but also provides a
useful physical information about the boundary value problem.

5.1. Validity of mode-matching solution. In order to do parametric inves-
tigation, the speed of sound in air c = 343ms−1 and density of air ρ = 1.2043kgm−3

are taken from Kaye and Laby [20]. The other parameters vary from one case to
another and will be precised accordingly. For the case considered herein the den-
sity and tension of membrane are taken to be ρm = 0.1715kgm−2 and T = 350Nm
while the height of the ducts are varied. The parameter chosen above are consistent
with Warren et al. [39]. Throughout in this subsection, we choose N = 180.

The continuity conditions at matching interface (2.14)-(2.15) can be verified by
using the truncated solution for a = 0.1m, h = 0.02m, d = 0.07m, and b = 0.15m.

In Figure 2, the real (�) and imaginary (	) parts of non-dimensional normal
velocity condition (2.14) for rigid strip at (0,∞) × {b} are plotted. It is observed
that the real and imaginary parts of the normal velocities ψ1x(0, y) and ψ2x(0, y)
match exactly when y ∈ (h, d) whereas �{ψ1x(0, y)} and 	{ψ1x(0, y)} are zero for
y ∈ (0, h) ∪ (d, b). However, periodic oscillations are apparent due to the singular
behavior of normal velocity fields at the corner or edges, confirming to Gibbs phe-
nomenon [14]. The singular behavior is very well discussed in [16]. Moreover the
Gibbs oscillations can be removed by using spectral filters and are comprehensively
addressed in [10,30,37].

Similarly, the continuity condition (2.15) of pressure in dimensionless setting is
tested in Figure 3. Clearly, the curves for real and imaginary parts of ψ1(0, y) and
ψ2(0, y) coincide when y ∈ (h, d), whereas �{ψ2(0, y)} → 0 and 	{ψ2(0, y)} → 0
for y ∈ (d, b) which confirms condition (2.15).
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Figure 2. Real (left) and imaginary (right) parts of normal ve-
locity curves ψjx(0, y) for j = 1 (solid) and j = 2 (dotted).
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Figure 3. Real (left) and imaginary (right) parts of pressure
curves ψj(0, y) for j = 1 (dotted) and j = 2 (solid).

5.2. Power balance. In this section, the power balance is discussed versus
frequency and vertical discontinuities for different configurations of duct sections.
The expressions (4.9)-(4.11) incorporate the power components for both acousti-
cally rigid and soft strips at (0,∞) × {b}. By considering � = 0 and � = 1 the
fundamental (structure-borne) and secondary (fluid-borne) modes are taken into
account as incident fields. Throughout in this subsection, we take N = 65.
Nota Bene. Throughout in this section, the solid, long dashed and dotted or
small dashed curves indicate respectively the reflected power (Pref), transmitted
power (Ptrans) and their sum (Pref + Ptrans).

5.2.1. Power balance versus frequency. Figure 4 is obtained by plotting the
power components against frequency (Hz) for a = 0.1m, h = 0.02m, d = 0.07m,
and b = 0.15m. It is clear that for structure-borne mode incidence most of the power
is reflected for the case of a rigid strip at (0,∞)×{b}. For secondary mode incidence
which cuts-on at f = 411Hz, the scattered power components vary inversely from
their maximum to half in the given frequency regime. However, when (0,∞)× {b}
is a soft strip, the power is totally reflected for 1Hz ≤ f ≤ 661Hz with both
structure-borne and fluid-borne mode incidences. For fluid-borne mode incidence,
there is sharp inversion of scattered power after f = 661Hz. It is the instance when
soft strip starts propagating. The sum of the reflected and transmitted powers is
unity, confirming that the power conservation identity (4.11) is satisfied.

Figure 5 shows the power balance versus frequency (f) with a = d = 0.1m,
h = 0.02m, and b = 0.15m. The configuration involves no flanged discontinuity at
matching interface which increases the transmission and decreases the reflection.
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Figure 4. Power components versus frequency for structure-
borne mode incidence (left) and fluid-borne mode incidence (right)
for acoustically rigid (top) and soft (bottom) surface at (0,∞) ×
{b}.
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Figure 5. Power balance versus frequency for structure-borne
mode incidence (left) and fluid-borne mode incidence (right) for
acoustically rigid (top) and soft (bottom) surface at (0,∞)× {b}.

The Figure 6 shows the power components against frequency (Hz) for a =
d = b = 0.1m, and h = 0m. The designated duct configuration has no step
discontinuity at matching interface, thereby 60% of the power goes on reflection and
remaining is transmitted when fundamental mode is incident and f < 411Hz. But
when f ≥ 411Hz, the secondary mode starts propagating and increases reflection.
In contrast, a sharp inversion in scattered powers is noted against frequency for
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Figure 6. Power balance versus frequency for structure-borne
mode incidence (left) and fluid-borne mode incidence for acous-
tically rigid(top) and soft (bottom) surface at (0,∞)× {b}.

secondary mode incidence with rigid strip at (0,∞) × {b}. However, for soft strip
case, we observe full reflection when 1Hz ≤ f < 859Hz for both fundamental
and secondary mode incidences. At this point, the soft strip bounded duct starts
propagating and a little power is transmitted for fundamental mode incidence.
However for secondary mode incidence, it goes with sharp inversion and power
balance (4.11) is achieved.

5.2.2. Power balance versus height discontinuities. Let us now examine power
components against height discontinuities at matching interface while the frequency
is fixed at f = 700Hz.

Figure 7, shows the variations in power components against h = kh, where
0m ≤ h ≤ 0.04m, for a = 0.1m, d = 0.07m, and b = 0.15m. Clearly, by increasing
h the reflection of energy flux increases and transmission decreases for both incident
modes ( i.e. � = 0 or 1).

Figure 8 shows the variations of power components against d, where 0.07m ≤
d ≤ 0.1m, whereas the other parameters are fixed at a = 0.1m, h = 0.02m, and
b = 0.15m

Figures 9 depicts the variations of power components against a, where 0.07m ≤
a ≤ 0.15m for a = d = 0.07m, h = 0.02m, and b = 0.15m.

In a nutshell, it is observed that the variation of height discontinuities sig-
nificantly affect the scattered powers for both the rigid and soft strips. However,
sharper rates of scattered powers are observed for the case of soft strip as compared
to that with rigid strip for both structure-borne and fluid-borne mode incidences.
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Figure 7. Power balance versus h for structure-borne mode inci-
dence (left) and fluid-borne mode incidence (right) for acoustically
rigid (top) and soft (bottom) surface at (x, y) ∈ (0,∞)× {b}.
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Figure 8. Power balance versus d for structure-borne mode inci-
dence (left) and fluid-borne mode incidence (right) for acoustically
rigid (top) and soft (bottom) surface at (0,∞)× {b}.
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Figure 9. Power balance versus a for structure-borne mode inci-
dence (left) and fluid-borne mode incidence (right) for acoustically
rigid (top) and soft (bottom) surface at (0,∞)× {b}.
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