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Abstract. In this paper we consider the problem of reconstructing the spatial support of noise sources
from boundary measurements using cross correlation techniques. We consider media with and without
attenuation and provide efficient imaging functionals in both cases. We also discuss the case where the noise
sources are spatially correlated. We present numerical results to show the viability of the different proposed
imaging techniques.
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1. Introduction. The main objective of this paper is to present an original approach
for detecting the spatial support of noise sources in an attenuating electromagnetic or acous-
tic medium. The main application envisaged by our work concerns robotic sound or mi-
crowave noise source localization and tracking; see, for instance, [12, 13, 14, 15, 21]. It is a
quite challenging problem to build an autonomous robotic system for finding, investigating,
and modeling ambient electromagnetic or sound noise sources in the environment. On the
other hand, a robot can be a rather significant source of electromagnetic and/or acoustic
noise. Detecting or hiding the robot to reduce the risk of being detected is also another
challenging problem. As will be seen in this paper, at least two robots have to be used in
order to locate noise sources by cross correlation.

Passive imaging from noisy signals has been a very active field. It has been shown that
the Green’s function of the wave equation in an inhomogeneous medium can be estimated
by cross correlating the signals emitted by ambient noise sources and recorded by a passive
sensor array [7, 17, 18]. The idea has been used for travel time estimation and background
velocity estimation in geophysical contexts, and also for passive sensor imaging of reflec-
tors [9, 10], which consists of backpropagating or migrating the cross correlation matrix of
the recorded signals. The relation between the cross correlation of ambient noise signals
recorded at two observation points and the Green’s function between these two points can
be proved using the Helmholtz-Kirchhoff identity when the ambient noise sources surround
the observation region [5, 20] or using stationary phase arguments in the high-frequency
regime when the support ambient noise sources are spatially limited [9, 19].

In [11] the noise source imaging problem is analyzed in a high-frequency asymptotic
regime and the support of the noise sources is identified with a special Radon transform.
Here we shall consider a general context in non-attenuating and attenuating media. In
attenuating media, one can think to first pre-process the data as originally done in [4]
and then backpropagate the cross correlation of the pre-processed data in a non-attenuating
medium. However, this seems impossible because the recorded data are very long and usually
contain a huge amount of additional measurement noise. Instead, we backpropagate the cross
correlation of the recorded data with a regularized version of the adjoint operator. Our main
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tool is a generalization to attenuating media of the Helmholtz-Kirchhoff identity. Moreover,
we address the problem of localizing spatially correlated noise sources. In particular, we
consider two specific examples: an extended distribution of locally correlated sources and a
collection of correlated point sources. We build functionals from the cross correlation that
are capable of first locating the noise sources and then estimating the correlation structure
between them.

The paper is organized as follows. In Section 2, we introduce a model problem and recall
the definition of cross correlation. In Section 3, we consider noise source localization in non-
attenuating media. We propose and analyze a weighted imaging functional for locating noise
sources which is based on backpropagating the cross correlation of the data and estimating
the power spectral density of the noise sources. In Section 4, we consider the thermo-viscous
wave model to incorporate the attenuation effect in wave propagation. Our strategy for
localizing the noise sources is to backpropagate the cross correlation with a regularized
version of the adjoint wave operator. We contrast this with the approach consisting of first
preprocessing the data before backrpopagating the cross correlation. In Section 5, we address
the impact of spatial correlation on noise source localization. Some numerical illustrations
to highlight the potential of proposed imaging functionals in the considered contexts are
presented. Finally, the paper ends with a short discussion and a conclusion.

2. Media Without Attenuation. Let us consider the scalar wave equation in a d-
dimensional open medium











1

c2(x)

∂2p

∂t2
(t,x)−∆p(t,x) = n(t,x), (t,x) ∈ R× R

d,

p(t,x) =
∂p(t,x)

∂t
= 0, t≪ 0,

(2.1)

where d = 2 or 3, c(x) is a positive smooth function bounded from below and above, and the
term n(t,x) models a distribution of noise sources that is compactly supported in a smooth
bounded domain Ω. The function c(x) is supposed to be equal to one outside a large ball.
Furthermore, we assume that n(t,x) is a stationary (in time) Gaussian process with mean
zero and covariance function

〈n(t,x)n(s,y)〉 = F (t− s)K(x)δ(x− y), (2.2)

where δ is the Dirac mass at the origin, the brackets stand for the statistical average, F is
the time covariance of the noise signals (its Fourier transform is the power spectral density)
and K characterizes the spatial support of the sources. The function K is the quantity we
want to identify from the data set {p(t,x), t ∈ [0, T ],x ∈ ∂Ω} recorded at the surface of the
domain Ω.

We need the following notation. Let v̂(ω) denote the Fourier transform of a function
v(t):

v̂(ω) =

∫

R

v(t) exp(iωt)dt.

We also introduce

G(t,x,y) =
1

2π

∫

R

Ĝ(ω,x,y) exp(−iωt)dω,
2



where Ĝ is the outgoing fundamental solution to the Helmholtz equation −(∆ + ω2/c(x))
in R

d:

(

∆x +
ω2

c2(x)

)

Ĝ(ω,x,y) = −δ(x− y) in R
d.

The time-dependent Green’s function is causal in the sense that G(t,x,y) = 0 for all t ≤ 0.
We observe the waves at the surface of the domain Ω and we compute the empirical

cross correlation:

CT (τ,x,y) =
1

T

∫ T

0

p(t,x)p(t+ τ,y)dt, x,y ∈ ∂Ω. (2.3)

If the recording time window is long enough then the empirical cross correlation is equivalent
to the statistical cross correlation [9]

C(τ,x,y) = 〈p(t,x)p(t+ τ,y)〉

=
1

2π

∫

R

[

∫

Ω

Ĝ(ω,x, z)Ĝ(ω,y, z)K(z)dz
]

F̂ (ω) exp(−iωτ) dω. (2.4)

Note that the statistical cross correlation contains all the information about the data. Indeed
the data set {p(t,x), t ∈ [0, T ],x ∈ ∂Ω} has stationary Gaussian distribution with mean zero,
so that its statistical distribution is fully characterized by the cross correlation.

3. Source Localization. We aim at identifying the source function K. The idea is to
backpropagate the cross correlation of the data, which contains all the accessible information
about the source distribution. The imaging functional for source localization is given by

I(zS) =

∫

R

∫∫

∂Ω×∂Ω

Ĝ(ω,x, zS)Ĝ(ω,y, zS)ĈT (ω,x,y)dσ(x)dσ(y)dω (3.1)

for the search point zS ∈ Ω. Here Ĉ is the Fourier transform of C defined by (2.4). Definition
(3.1) is equivalent to

I(zS) = 2π

∫∫

∂Ω×∂Ω

[

∫ ∞

0

∫ ∞

0

G(t,x, zS)G(s,y, zS)CT (s− t,x,y)dtds
]

dσ(x)dσ(y).

(3.2)
By (2.4) and Helmholtz-Kirchhoff identity [2]

∫

∂Ω

Ĝ(ω,x,y)Ĝ(ω, z,y)dσ(y) ≃ 1

ω
Im

{

Ĝ(ω,x, z)
}

, (3.3)

which holds as |x− y| and |z − y| are large enough compared to the wavelength 2π/ω, we
find that

I(zS) ≃
∫

R

∫

Ω

F̂ (ω)

ω2
Im

{

Ĝ(ω, zS , z)
}2
K(z)dzdω.

This gives the following proposition.
Proposition 3.1. The imaging functional (3.1) gives the source function K up to a

smoothing operator, i.e.,

I(zS) ≃
∫

Ω

Q(zS , z)K(z)dz (3.4)
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with the smoothing kernel Q defined by

Q(zS , z) =

∫

R

F̂ (ω)

ω2
Im

{

Ĝ(ω, zS , z)
}2
dω. (3.5)

In view of Proposition 3.1, the resolution of the imaging functional I is determined by
the kernel Q(zS , z). High-frequency components are penalized in this functional because
of the factor ω−2 and therefore, the resolution is limited. In order to achieve a better
resolution, we shall modify the imaging functional to make its smoothing kernel as close
as possible from a Dirac distribution δ(zS − z). We should be aware that enhancing the
high-frequency components may cause instability in the imaging procedure. In the next
subsection we introduce a weighted imaging algorithm where the weight is chosen in terms
of estimations of the power spectral density of the noise sources.

3.1. Two- and Three-Dimensional Homogeneous Media. In this subsection we
first show that the smoothing operator is a simple convolution operator in the case of a three-
dimensional homogeneous background with c(x) ≡ 1 in R

3. Indeed, the Green’s function
is

G(t,x, y) =
1

4π|x− y|δ
(

t− |x− y|
)

and hence the imaging functional takes the simple form

I(zS) =
1

8π

∫∫

∂Ω×∂Ω

1

|x− zS | |y − zS |CT

(

|y − zS | − |x− zS |,x,y
)

dσ(x)dσ(y).

We also have

1

ω
Im

{

Ĝ(ω, zS , z)
}

=
1

4π
sinc

(

ω|z − zS |
)

and therefore, the smoothing operator is a convolution and the imaging functional (3.1) has
the form

I(zS) ≃
∫

Ω

Q(zS − z)K(z)dz

with the convolution kernel

Q(z) =
1

16π2

∫

R

F̂ (ω)sinc2
(

ω|z|
)

dω.

In a two-dimensional homogeneous medium, the convolution kernel has the form

Q(z) =
1

16

∫

R

F̂ (ω)

ω2
J2
0

(

ω|z|
)

dω,

where J0 is the Bessel function of the first kind and of order zero.
The presence of the factor ω−2 indicates that a frequency-dependent weight should be

used (as explained below) in order to avoid this singularity that amplifies the low-frequency
components, or that the backpropagation should be carried out with the time-derivative of
the Green’s function, so that the factor ω−2 is cancelled.
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The power spectral density of the noise sources plays a smoothing role in the kernel Q
while we would like this kernel to be as close as possible to a Dirac distribution. The idea
for an improved functional is based on the estimation of the power spectral density of the
noise sources. Let us introduce

F(ω) =

∫

∂Ω

ĈT (ω,x,x)dσ(x). (3.6)

The power spectral density F(ω) can be estimated from the data. However one must pay
attention to the fact that the time-harmonic quantity ĈT is not statistically stable, but it has
a small frequency correlation radius of the order of 1/T , where T is the recording time defined
in (2.3) [9]. The time-dependent quantity CT is stable because it is an integral over many
uncorrelated frequency components. In fact is a well-known and general problem that the
variance of the periodogram remains positive whatever the duration of the recorded signals.
Therefore one must average the empirical estimation (3.6) over moving frequency windows
large enough to ensure statistical stability and small enough to capture the variations of
the power spectral density F̂ (ω). This means that the width ∆ω of the moving frequency
window should be larger than 1/T , but smaller than the noise bandwidth:

F̃(ω) =
1

∆ω

∫ ω+∆ω/2

ω−∆ω/2

∫

∂Ω

ĈT (ω
′,x,x)dσ(x)dω′.

Using once again Helmholtz-Kirchhoff identity, one can see that F̂ (ω) can be estimated by
F̃(ω):

F̃(ω) ≃ F̂ (ω)

∫

Ω

Im
{

Ĝ(ω, z, z)
}

ω
K(z)dz.

In a three-dimensional homogeneous medium with c(x) ≡ 1, we have

Im
{

Ĝ(ω, z, z)
}

ω
=

1

4π

and F̃(ω) is proportional to the power spectral density of the noise sources:

F̃(ω) ≃ K0F̂ (ω), K0 =
1

4π

∫

Ω

K(z)dz.

Let us introduce a weight function W (ω) and the weighted imaging functional IW as

IW (zS) =

∫

R

W (ω)

F̃(ω)

∫∫

∂Ω×∂Ω

Ĝ(ω,x, zS)Ĝ(ω,y, zS)ĈT (ω,x,y)dσ(x)dσ(y)dω. (3.7)

Proposition 3.2. In a three-dimensional homogeneous background with c(x) ≡ 1, the
weigted imaging functional (3.7) satisfies

IW (zS) =

∫

Ω

QW (zS − z)
K(z)

K0
dz (3.8)

with

QW (z) =
1

16π2

∫

R

W (ω)sinc2
(

ω|z|
)

dω. (3.9)
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In fact, the weight function W (ω) should be supported in the estimated band width
(−ωmax, ωmax) of the recorded noise signals otherwise the ratio W (ω)/F̃(ω) in (3.7) makes
no sense. The idea is to choose W (ω) so that the convolution kernel (called also the point
spread function) QW is as close as possible to a Dirac distribution.

In a two-dimensional homogeneous medium, it is easy to check that (3.8) holds with

K0 =
1

4

∫

Ω

K(z)dz,

and

QW (z) =
1

16

∫

R

W (ω)

ω2
J2
0

(

ω|z|
)

dω. (3.10)

The Fourier transform of the kernel QW is then

Q̂W (k) =
1

2|k|3
∫ ∞

1/2

W (|k|u)
u2(4u2 − 1)1/2

du. (3.11)

To prove (3.11) we use [1, formula 6.522.11]
∫ ∞

0

xJ2
0 (ax)J0(bx)dx =

2

πb(4a2 − b2)1/2
10<b<2a,

where 1 denotes the characteristic function, to get
∫

R2

J2
0 (ω|z|) exp(iz · k) dz =

4

|k|(4ω2 − |k|2)1/2 1|k|<2|ω|.

Substituting into

Q̂W (k) =
1

16

∫

R

∫

R2

W (ω)

ω2
J2
0 (ω|z|) exp(iz · k) dzdω, (3.12)

gives the desired formula (3.11).

With formulas (3.9) and (3.10) in hand, recalling the closure relations [16]

∫ +∞

0

ωJ0(ω|z|)2 dω =
1

|z|δ(z), (3.13)

and
∫ +∞

0

ω2sinc(ω|z|)2 dω =
1

|z|2 δ(z), (3.14)

which hold in the sense of distributions, shows that a potential candidate for the filter W (ω)
should be

W (ω) =

{

|ω|31|ω|<ωmax
for d = 2,

ω21|ω|<ωmax
for d = 3,

where (−ωmax, ωmax) is the estimated support of F̃(ω). In particular, for d = 2, we have

Q̂W (k) =
ωmax

4|k|
(

1− |k|2
4ω2

max

)1/2

1|k|≤2ωmax
, QW (z) =

ω2
max

4

[

J2
0

(

ωmax|z|
)

+J2
1

(

ωmax|z|
)

]

.
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3.2. Backpropagation in a Two-Dimensional Medium. We show in this subsec-
tion how it is possible to implement a parallel version of the imaging functional. Here we do
not assume that c(x) ≡ 1. For the sake of simplicity we consider only the two-dimensional
case. Similar calculations can be carried out in three dimensions using spherical harmonics.
We set Ω to be the disk with center at zero and radius one and denote by C(τ, θ, θ′) the
cross correlations measured between the points eθ and eθ′ , with eθ = (cos θ, sin θ). We can
expand the cross correlation in the basis exp(inθ):

CT (τ, θ, θ
′) =

∑

n,m∈Z

cn,m(τ) exp(inθ + imθ′),

where

cn,m(τ) =
1

4π2

∫ 2π

0

∫ 2π

0

CT (τ, θ, θ
′) exp(−inθ − imθ′) dθdθ′.

Then the imaging functional takes the form

I(zS) = 2π
∑

n,m∈Z

∫ ∞

0

∫ ∞

0

pn(t, z
S)pm(s, zS)cn,m(s− t)dsdt,

or

I(zS) =
∑

n,m∈Z

∫

R

p̂n(ω, z
S)p̂m(ω, zS)ĉn,m(ω)dω,

where

pn(t, z) =

∫ 2π

0

G(t, eθ, z) exp(inθ) dθ

is the solution to the problem











1

c2(x)

∂2pn
∂t2

(t,x)−∆pn(t,x) = fn(x)δ∂Ω(x)δ0(t), (t,x) ∈ [0,∞)× R
2,

pn(t,x) =
∂pn(t,x)

∂t
= 0, t = 0.

Here δ∂Ω is the Dirac mass at ∂Ω and fn(x) = (x1+ix2)
n for x = (x1, x2) so that exp(inθ) =

fn(cos θ, sin θ). Note that f−n = fn so that p−n = pn. In practice the functional is truncated
as follows

IN (zS) = 2π

N
∑

n,m=−N

∫ ∞

0

∫ ∞

0

pn(t, z
S)pm(s, zS)cn,m(s− t)dsdt.

This version of the imaging functional can be implemented in a parallel way: on the one
hand, one needs to compute the functions pn(t, z) for n = 0, . . . , N , t > 0, z ∈ Ω (we do
not need to know the data), which requires to solve N wave equations; on the other hand
one computes the coefficients cn,m(τ), n,m = 0, . . . , N , τ ∈ R from the data set. However,
the memory cost is huge, because one needs to store the full time-space solutions of the N
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wave equations (at least the solutions in the search region).

A numerical alternative consists of using a PDE description of time-reversal algorithm
[2, 3, 8]. Indeed, note that

I(zS) =

∫

R

∫

∂Ω

∫

∂Ω

Ĝ(ω,x, zS)Ĝ(ω,x, zS)ĈT (ω,x,y)dσ(x)dσ(y)dω

=

∫

R

∫

∂Ω

∫

∂Ω

Ĝ(ω,x, zS)Ĝ(ω,x, zS)p̂(ω,x)p̂(ω,y)dσ(x)dσ(y)dω

=

∫

R

∣

∣

∣

∣

∫

∂Ω

Ĝ(ω,x, zS)p̂(ω,x)dσ(x)

∣

∣

∣

∣

2

dω = 2π

∫ T

0

v(t, zs)2dt,

where the function v is expressed in the form

v(x, t) =

∫ T

0

vs(t,x)ds,

and vs is the solution of

{

1
c2(x)

∂2vs(t,x)
∂t2 −∆vs(t,x) = p(T − s,x)δ∂Ω(x)δ(t− s)

vs(t,x) = 0, ∂tvs(t,x) = 0 for all t < s.

More generally, the imaging functional IW (zS) can be obtained by applying I(zS) on the
filtered data p̃(t,x), obtained as

ˆ̃p(ω,x) =

√

W (ω)

F̃(ω)
p̂(ω,x).

In this paper, we used this method to perform some numerical experiments.

3.3. Numerical Simulations. In this subsection we first describe the discretization
of the noise sources and recorded signals that can be used in numerical simulations. We
introduce a regular grid of points (xk)k=1,...,Nx

with grid step hx covering the support of
K and a regular grid of positive frequencies (ωj)j=1,...,Nω

with grid step hω covering the

support of F̂ . The noise source term can be discretized in space as

n(t,x) =
1

πd/2h
d/2
x

Nx
∑

k=1

exp(−|xk − x|2
h2x

)K(xk)
1/2nk(t), (3.15)

where the processes nk(t) are independent stationary Gaussian processes with mean zero
and covariance function F (t). They can be discretized in time/frequency as

nk(t) =
(2hω)

1/2

π1/2
Re

{

Nω
∑

j=1

Zj,kF̂ (ωj)
1/2 exp(−iωjt)

}

,

where Zk,j = Ak,j + iBk,j , Ak,j and Bk,j being independent Gaussian random variables
with mean zero and variance 1/2 (so that

〈

Z2
k,j

〉

= 0 and
〈

|Zk,j |2
〉

= 1). We have indeed
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(remember that F̂ is even and nonnegative real-valued)

〈nk(t)nk(t+ τ)〉 =
hω
2π

[

Nω
∑

j=1

F̂ (ωj) exp(−iωjτ) +

Nω
∑

j=1

F̂ (−ωj) exp(iωjτ)
]

≃ 1

2π

∫

R

F̂ (ω) exp(−iωτ) dω = F (τ),

provided hω is small enough, and

〈n(t,x)n(t+ τ,y)〉 = 1

πdhdx
exp(−|x− y|2

2h2x
)

Nx
∑

k=1

exp(−2
|x+y

2 − xk|2
h2x

)K(xk)F (τ)

≃ 1

πdh2dx
exp(−|x− y|2

2h2x
)

∫

Rd

exp(−2
|x+y

2 − z|2
h2x

)K(z)dzF (τ)

=
1

πdh2dx
exp(−|x− y|2

2h2x
)

∫

Rd

exp(−2
|z|2
h2x

)K
(x+ y

2
− z

)

dzF (τ)

≃ 1

(2π)d/2hdx
exp(−|x− y|2

2h2x
)K

(x+ y

2

)

F (τ)

≃ δ(x− y)K(x)F (τ),

provided hx is small enough.
It is also possible to take

n(t,x) = hd/2x

Nx
∑

k=1

δ(xk − x)K(xk)
1/2nk(t)

instead of (3.15), which is the simplest model for numerical simulations (a collection of
uncorrelated point sources). In these conditions the recorded noise signal at x is

p(t,x) =
(2hω)

1/2h
d/2
x

π1/2
Re

{

Nω
∑

j=1

Nx
∑

k=1

Ĝ(ωj ,x,xk)F̂ (ωj)
1/2K(xk)

1/2Zj,k exp(−iωjt)
}

and the statistical cross correlation is (remember Ĝ(−ω,x,y) = Ĝ(ω,x,y))

C(τ,x,y) =
hωh

d
x

2π

[

Nω
∑

j=1

Nx
∑

k=1

Ĝ(ωj ,x,xk)Ĝ(ωj ,y,xk)F̂ (ωj)K(xk) exp(−iωjτ )

+

Nω
∑

j=1

Nx
∑

k=1

Ĝ(−ωj ,x,xk)Ĝ(−ωj ,y,xk)F̂ (−ωj)K(xk) exp(iωjτ )
]

≃ 1

2π

∫

R

∫

Ω

Ĝ(ω,x, z)Ĝ(ω,y, z)F̂ (ω)K(z) exp(−iωτ) dzdω.

For all numerical experiments presented in this paper, the set Ω is assumed to be a disk
centered at the origin and of radius one. The function F is chosen in the form

F̂ (ω) = exp

(

−π ω2

ω2
max

)

. (3.16)
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The solution vs of the equation

1

c2(x)

∂2vs(t,x)

∂t2
−∆vs(t,x) = p(T − s,x)δ∂Ω(x)δ(t− s)

is computed on a larger box Ω ⊂ Q = [−L/2, L/2]2. We use a Fourier spectral approach
coupled with a Perfectly Matched Layer technique to simulate a free outgoing interface on
∂Q. The boundary ∂Ω is discretized using steps of discretization given by ht = T/Nt and
hx = L/Nx.

Figure 3.1 shows some numerical reconstructions of the source location K using the
imaging functionals I and IW for W (ω) = |ω|31|ω|<ωmax

. The first line corresponds to
the case of well separated point sources. It turns out that both imaging functionals give an
efficient reconstruction of the source K. The second line corresponds to the case of extended
sources (five localized Gaussian peaks). We observe in this case that the second imaging
functional IW gives a better reconstruction of K. We expect that this observation is a
consequence of the factor ω−2 which appears in the kernel associated to I and penalizes the
high-frequency components of the image.
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Fig. 3.1. Test 1: non-attenuating medium with T = 8, ωmax = 1000, Nx = 28, and Nt = 211. Top
line: five point sources; bottom line: five extended sources. Left: K(x); middle: reconstruction of K using
I; right: reconstruction of K using IW with W (ω) = |ω|31|ω|<ωmax

.

Figure 3.2 presents estimations of the power spectral density. Averaging (3.6) over
moving frequency windows yields a statistically stable estimation.

4. Localization of Sources in Attenuating Media. In this section, we consider
the thermo-viscous wave model to incorporate the attenuation effect in wave propagation.
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Fig. 3.2. Estimations of the power spectral density with and without averaging over a moving frequency
window. Top figure: F̂ (ω) = exp

(

−πω2/ω2
max

)

(as in (3.16)) with ωmax = 1000. Bottom figure: F̂ (ω) =

1|ω|≤100 exp
(

−πω2/ω2
max

)

.

Let pa be the solution of the problem











1

c2(x)

∂2pa
∂t2

(t,x)−∆pa(t,x)− a
∂

∂t
∆pa(t,x) = n(t,x), (t,x) ∈ R× R

d,

pa(t,x) =
∂pa
∂t

(t,x) = 0, t≪ 0.

Again, the problem is to reconstruct the source function K from the data set {pa(t,x), t ∈
[0, T ],x ∈ ∂Ω} recorded at the surface of the domain Ω, or more exactly from the empirical
cross correlation CT,a defined as in (2.3).
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We introduce the fundamental solution Ĝa(ω,x, y) of the Helmholtz equation

ω2

c2(x)
Ĝa(ω,x,y) + (1 − iaω)∆xĜa(ω,x,y) = −δ(y − x).

It is given by

Ĝa(ω,x,y) =
κa(ω)

2

ω2
Ĝ(κa(ω),x,y) (4.1)

in terms of the non-attenuating Green’s function Ĝ(ω,x,y) = Ĝ0(ω,x,y), with

κa(ω) =
ω√

1− iaω
.

When the recording time T is long enough, the empirical cross correlation CT,a is equivalent
to the statistical cross correlation

Ca(τ,x,y) = 〈pa(t,x)pa(t+ τ,y)〉

=
1

2π

∫

R

[

∫

Ω

Ĝa(ω,x, z)Ĝa(ω,y, z)K(z)dz
]

F̂ (ω) exp(−iωτ) dω.

Our strategy to localize the sources is to backpropagate the cross correlation with a regu-
larized version of the adjoint propagator.

4.1. Hemholtz-Kirchhoff Identity. Our main tool for studying noise source local-
ization in attenuating media is the following result. It is a generalization to attenuating
media of the Helmholtz-Kirchhoff identity (3.3).

Lemma 4.1. If Ω is a ball with large radius (compared to the wavelength 2π/ω) and
c(x) is equal to one outside the ball then
∫

∂Ω

Ĝ−a(ω,x, z
S)Ĝa(ω,x, z)dσ(x) ≃

1

2iκa(ω)(1 + iaω)

(

Ĝ−a(ω, z, z
S)− Ĝa(ω, z, z

S)
)

.

(4.2)
We also have

(1 + a2ω2)κa,r(ω)

∫

∂Ω

Ĝa(ω,x, z
S)Ĝa(ω,x, z)dσ(x)

+aω3

∫

Ω

c−2(z)Ĝa(ω,x, z
S)Ĝa(ω,x, z)dx

≃ Im
(

Ĝa(ω, z
S , z)

)

− aωRe
(

Ĝa(ω, z
S , z)

)

(4.3)

with

κa,r(ω) = Re(κa(ω)) =
ω√

2
√
1 + a2ω2

√

√

1 + a2ω2 + 1. (4.4)

Proof. It is a consequence of Green’s theorem and the fact that κa(ω) = κ−a(ω). More
precisely, we consider the equations

− ω2

c2(x)
Ĝ−a(ω,x, z

S)− (1 + iaω)∆xĜ−a(ω,x, z
S) = δ(zS − x) (4.5)
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and

− ω2

c2(x)
Ĝa(ω,x, z)− (1 + iaω)∆xĜa(ω,x, z) = δ(z − x). (4.6)

We then multiply (4.5) by Ĝa(ω,x, z) and (4.6) by Ĝ−a(ω,x, z
S), subtract these two equa-

tions from each other, integrate over Ω and apply Green’s divergence theorem.
Note the presence of the volume integral in (4.3) which shows that the adjoint Green’s

function Ĝ−a should be used for backpropagation and not the Green’s function Ĝa. The
imaging functional for source localization should be

I(zS) =

∫

R

∫∫

∂Ω×∂Ω

Ĝ−a(ω,x, z
S)Ĝ−a(ω,y, z

S)ĈT,a(ω,x,y)dσ(x)dσ(y)dω (4.7)

for the search point zS ∈ Ω. However, the backpropagation uses the adjoint operator
Ĝ−a(ω,x, z

S) that has an exponentially growing part, since it can be seen from

κa,i(ω) = Im(κa(ω)) =
|ω|sgn(a)√
2
√
1 + a2ω2

√

√

1 + a2ω2 − 1, (4.8)

where sgn denotes the sign function, that κ−a,i(ω) is negative. Thus we should use a
regularized version of the form

Iρ(zS) =

∫

|ω|≤ρ

∫∫

∂Ω×∂Ω

Ĝ−a(ω,x, z
S)Ĝ−a(ω,y, z

S)ĈT,a(ω,x,y)dσ(x)dσ(y)dω, (4.9)

where ρ is a cut-off frequency. Using Lemma 4.1 we obtain the following result.
Proposition 4.2. The regularized imaging functional (4.9) satisfies

Iρ(zS) =

∫

Ω

Qρ(z
S , z)K(z)dz (4.10)

with

Qρ(z
S , z) =

∫

|ω|≤ρ

F̂ (ω)

4ω2(1 + a2ω2)1/2

∣

∣

∣
Ĝ−a(ω, z, z

S)− Ĝa(ω, z, z
S)
∣

∣

∣

2

dω. (4.11)

The next subsection will show how to calibrate the cut-off parameter ρ in order to get a
stable imaging functional.

4.2. Three-Dimensional Homogeneous Medium. Using the explicit expression of
the homogeneous Green’s function we get the following lemma.

Lemma 4.3. The Green’s function Ĝ−a(ω,x,y) is given by

Ĝ−a(ω,x,y) =
κ−a(ω)

2

ω2
Ĝ(κ−a(ω),x,y) with Ĝ(ω,x,y) =

exp(iω|x− y|)
4π|x− y| .

If Ω is a ball with large radius (compared to the wavelength), then we have
∫

∂Ω

Ĝ−a(ω,x, z
S)Ĝa(ω,x, z)dσ(x)

≃ κa,r(ω)

4πω(1 + iaω)3/2
sinc

(

κa,r(ω)|zS − z|
)

cosh
(

κa,i(ω)|zS − z|
)

−i κa,i(ω)

4πω(1 + iaω)3/2
cos

(

κa,r(ω)|zS − z|
)

sinhc
(

κa,i(ω)|zS − z|
)

, (4.12)
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where sinc(r) = sin(r)/r and sinhc(r) = sinh(r)/r.
The adjoint operator Ĝ−a(ω,x, z

S) grows exponentially as exp(κa,i(ω)|zS − x|). This
term should not be much larger than one, otherwise noise terms would be amplified in the
backpropagation. Since κa,i(ω) grows like aω2/2 for a|ω| < 1, (and as (|ω|/(2a))1/2 for
a|ω| > 1), one should not backpropragate the high-frequency components, with frequencies
larger than (a diam(Ω))−1/2, where diam denotes the diameter. This limitation also allows
to neglect the exponential term in the right-hand side of (4.12) and to claim that identity
(4.12) gives a localized kernel that has the form of a sinc with a width of the order of the
wavelength.

The imaging functional for source localization is given by (4.9). The cut-off frequency ρ
should be of the order of (a diam(Ω))−1/2. By (4.12) we arrive at the following proposition.

Proposition 4.4. In a three-dimensional homogeneous background with c(x) ≡ 1 and
a > 0, the regularized imaging functional (4.9) satisfies

Iρ(zS) ≃
∫

Ω

Qρ(z
S − z)K(z)dz (4.13)

with

Qρ(z) =
1

16π2

∫

|ω|≤ρ

F̂ (ω)

√
1 + a2ω2 + 1

2(1 + a2ω2)5/2
sinc2

(

κa,r(ω)|z|
)

dω

+
1

16π2

∫

|ω|≤ρ

F̂ (ω)

√
1 + a2ω2 − 1

2(1 + a2ω2)5/2
sinhc2

(

κa,i(ω)|z|
)

dω. (4.14)

The first term in (4.14) gives the peak centered at zero in the convolution kernel Qρ, with a
width of the order of ρ−1. The second term is responsible for the instability of the imaging
functional (since it is exponentially growing). In order to make it small compared to the
peak, we should cut the high frequencies and choose ρ smaller than (adiam(Ω))−1/2. This
means that, at the expense of a loss in resolution, the imaging functional can be stable.

4.3. Backpropagation in a Two-Dimensional Medium. Here we do not assume
that c(x) ≡ 1. We consider that Ω is the disk centered at the origin and of radius one. We
expand the cross correlation as in Subsection 3.2:

CT,a(τ, θ, θ
′) =

∑

n,m∈Z

cn,m(τ) exp(inθ + imθ′),

where

cn,m(τ) =
1

4π2

∫ 2π

0

∫ 2π

0

CT,a(τ, θ, θ
′) exp(−inθ − imθ′) dθdθ′.

Then the imaging functional takes the form

I(zS) = 2π
∑

n,m∈Z

∫ ∞

0

∫ ∞

0

p−a,n(t, z
S)p−a,m(s, zS)cn,m(s− t)dsdt,

or

I(zS) =
∑

n,m∈Z

∫

R

p̂−a,n(ω, z
S)p̂−a,m(ω, zS)ĉn,m(ω)dω,
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where

p−a,n(t, z) =

∫ 2π

0

G−a(t, eθ, z) exp(inθ) dθ

is the solution to the problem










[ 1

c2(x)

∂2

∂t2
−∆+ a

∂

∂t
∆
]

p−a,n(t,x) = fn(x)δ∂Ω(x)δ(t), (t,x) ∈ [0,∞)× R
2,

p−a,n(t,x) =
∂p−a,n(t,x)

∂t
= 0, t = 0.

As pointed out in [4], this adjoint problem is ill-posed. We need to regularize the high
frequencies. The regularized imaging functional (4.9) can be expressed as

Iρ(zS) = 2π
∑

n,m∈Z

∫ ∞

0

∫ ∞

0

p−a,n,ρ(t, z
S)p−a,m,ρ(s, z

S)cn,m(s− t)dsdt

or

Iρ(zS) =
∑

n,m∈Z

∫

R

p̂−a,n,ρ(ω, z
S)p̂−a,m,ρ(ω, z

S)ĉn,m(ω)dω

=
∑

n,m∈Z

∫

|ω|≤ρ

p̂−a,n(ω, z
S)p̂−a,m(ω, zS)ĉn,m(ω)dω,

where

p̂−a,n,ρ(ω, z) = p̂−a,n(ω, z)1|ω|≤ρ.

Remark 4.5. The function p−a,n,ρ(t, z) can be identified as the solution to the problem










[ 1

c2(x)

∂2

∂t2
−∆+ a

∂

∂t
∆
]

p−a,n,ρ(t,x) = fn(x)δ∂Ω(x)Sρ

[

δ
]

(t), (t,x) ∈ [0,∞)× R
2,

p−a,n,ρ(t,x) =
∂p−a,n,ρ(t,x)

∂t
= 0, t = 0,

where Sρ is the operator defined by

Sρ

[

φ
]

(t) =
1

2π

∫

|ω|≤ρ

φ̂(ω) exp(−iωt) dω.

Note also that the functional Iρ can be expressed in the form

Iρ(z) =
∫ T

0

v−a,ρ(t, z)dt,

where

v−a,ρ(t, z) =

∫ T

0

vs,−a,ρ(t, z)ds,

and vs,−a,ρ being defined as the solution of the equation
[

1

c2(x)

∂2

∂t2
−∆+ a

∂

∂t
∆

]

vs,−a,ρ(t,x) = p(T − s,x)δ∂Ω(x)Sρ [δ] (t− s).
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4.4. Remark on the Backpropagation in a Non-Attenuating Medium of Pre-

Processed Data. An idea that seems interesting is to try to build a regularized imaging
functional as in the case of a source term that is a Dirac distribution in time [4]. This can
be done by first regularizing the data and then backpropagating it in the non-attenuating
medium.

On the one hand, it is not possible to do this to the data themselves, since the recorded
signals are very long and usually contain a huge amount of additional measurement noise
(which disappears when one computes the cross correlation). Indeed, we have

Ĉa(ω,x,y) = F̂ (ω)

∫

Ω

Ĝa(ω,x, z)Ĝa(ω,y, z)K(z)dz, (4.15)

and, although (4.1) holds, formula (4.15) is not in the form

Ĉa(ω,x,y) = F̂ (ω)
|κa(ω)|4
ω4

∫

Ω

Ĥ(κa(ω),x,y, z)K(z)dz.

In fact, we have

Ĉa(ω,x,y) = F̂ (ω)
|κa(ω)|4
ω4

∫ ∞

0

∫ ∞

0

∫

Ω

K(z)G(s,x, z)G(s + v,y, z)dz exp(−2κa,i(ω)s)ds

× exp(iκa(ω)v)dv.

The damping exp(−2κa,i(ω)s) is quite problematic. It implies that the compensation of
the attenuation can only be carried out -approximately- for a given target point zS , which
means using the adjoint Green’s function or equivalently, backpropagating in an amplifying
medium.

4.5. Numerical Experiments. Figure 4.1 presents some numerical source reconstruc-
tions in attenuating media. Each line respectively corresponds to the attenuation coefficient
a = 0.0005, a = 0.001, and a = 0.002. In the first column, the sources are localized by
applying the imaging functional IW . As expected, the attenuation affects the image quality.
In the second and the third columns of Figure 4.1, we use the functional Iρ with ρ = 7.5
and ρ = 15, respectively. The reconstructions are improved, but as illustrated in the last
figure of the third line, this technique is quite instable in the case of a too large attenuation
coefficient a.

5. Localization of Correlated Sources. In the previous sections we have considered
the case in which the noise sources are spatially uncorrelated, which translates in the fact
that the covariance function (2.2) is delta-correlated in space. In this section we would
like to address the impact of spatial correlation in the source localization. First we will
address the general problem and then we will consider two specific examples: an extended
distribution of locally correlated sources and a collection of correlated point sources.

5.1. Spatially Correlated Sources. We assume in this section that the noise source
term n(t,x) is a stationary (in time) Gaussian process with mean zero and covariance
function

〈n(t,x)n(s,y)〉 = F (t− s)Γ(x,y), (5.1)

where F is the time covariance of the noise signals and Γ characterizes the spatial support
and covariance of the sources. The function Γ is the quantity we want to identify from
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Fig. 4.1. Test 2: five point sources in attenuating medium with T = 8, ωmax = 1000, Nx = 28, and
Nt = 211. From top to bottom: a = 0.0005, a = 0.001, and a = 0.002. From left to right: IW , Iρ with
ρ = 7.5, and Iρ with ρ = 15.

the data set {p(t,x), t ∈ [0, T ],x ∈ ∂Ω} recorded at the surface of the domain Ω. We are
primary interested in the support of Γ, but we would like also to extract information about
the covariance structure of the noise sources.

The empirical cross correlation (2.3) is self-averaging as in the delta-correlated case and
becomes equivalent to the statistical cross correlation C when the recording time T → ∞,
where

C(τ,x,y) =
1

2π

∫

R

[

∫∫

Ω×Ω

Ĝ(ω,x, z)Ĝ(ω,y, z′)Γ(z, z′)dzdz′
]

F̂ (ω) exp(−iωτ) dω. (5.2)

We can build two functionals from the cross correlation. The first one is I defined by
(3.1) and aims at estimating the support of the noise sources. The second one aims at
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estimating the covariance function Γ and is defined by

J (zS , zS′

) =

∫

R

∫∫

∂Ω×∂Ω

Ĝ(ω,x, zS)Ĝ(ω,y, zS′

)ĈT (ω,x,y)dσ(x)dσ(y)dω. (5.3)

Note that we have I(zS) = J (zS , zS). Using Helmholtz-Kirchhoff formula, we obtain the
following result.

Proposition 5.1. The functional (5.3) satisfies

J (zS , zS′

) =

∫∫

Ω×Ω

Ψ(zS , zS′

, z, z′)Γ(z, z′)dzdz′

with

Ψ(zS , zS′

, z, z′) =

∫

R

F̂ (ω)

ω2
ImĜ(ω, z, zS)ImĜ(ω, z′, zS′

)dω.

In particular, in a three-dimensional homogeneous medium we have

Ψ(zS , zS′

, z, z′) = ψ(zS − z, zS′ − z′), (5.4)

with

ψ(z, z′) =
1

16π2

∫

R

F̂ (ω)sinc(ω|z|)sinc(ω|z′|)dω, (5.5)

which shows that the convolution kernel smoothes in both z and z′ the estimation of Γ by
the functional J .

5.2. An Extended Distribution of Locally Correlated Sources. Let us assume
that the covariance of the noise source term is of the form

Γ(z, z′) = K(
z + z′

2
)γ(z − z′).

Here, the function K characterizes the spatial support of the noise sources and γ character-
izes the local covariance structure. This models an extended noise source distribution which
has local correlation. Then, we find the following result.

Proposition 5.2. The functional (3.1) satisfies

I(zS) =

∫

Ω

Φ(z, zS)K(z)dz

with

Φ(z, zS) =

∫

R

F̂ (ω)

ω2

∫

ImĜ(ω, z + ζ/2, zS)ImĜ(ω, z − ζ/2, zS)γ(ζ)dζdω.

In particular, in a three-dimensional homogeneous medium we have

Φ(z, zS) = φ(z − zS), (5.6)

with

φ(z) =
1

16π2

∫

R

F̂ (ω)

∫

sinc(ω|z + ζ/2|)sinc(ω|z − ζ/2|)γ(ζ)dζdω. (5.7)
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This shows that we recover the function K up to a smoothing that is large when γ is far
from a Dirac distribution or a narrow peak. Spatial correlation in the noise sources blur the
source localization.

If the width of the function γ is smaller than ω−1
max where ωmax is the maximal frequency

of the power spectral density F̂ , then the spatial correlation of the sources play no role and
we recover the results obtained in the case of delta-correlated noise sources in which the
convolution kernel (5.7) is given by

φ(z) =
γ̂(0)

16π2

∫

R

F̂ (ω)sinc2(ω|z|)dω. (5.8)

If the width of the function γ is large and the function γ is isotropic so that γ̂(k) = γ̃(|k|),
then the convolution kernel (5.7) is given by

φ(z) = 2
[

∫ ∞

0

kγ̃(k)dk
]

∫

R

F̂ (ω)

ω2
sinc(2ω|z|)dω. (5.9)

The kernel is not nonnegative (which means that sidelobes are likely to appear). Moreover,
low-frequency components are amplified, so that it is necessary to use a frequency-dependent
weight or to backpropagate with the time-derivative of the Green’s function in order to
cancel the factor ω−2 in (5.9). Note that formula (5.9) follows from the substitution of the
representation formula

sinc(ω|z|) = 1

4π

∫

∂B(0,1)

exp(iωz · k) dσ(k)

in (5.7).

5.3. A Collection of Correlated Point Sources. Let us assume that the covariance
of the noise source term is of the form

Γ(z, z′) =

Ns
∑

i,j=1

γijδ(z − zi)δ(z − zj),

where (γij)i,j=1,...,Ns
is a symmetric nonnegative matrix. This models a collection of Ns

point sources located at zi, i = 1, . . . , Ns, which have respective power γii. The coefficients
ρij = γij/

√
γiiγjj ∈ [−1, 1] represent the correlations between the sources at zi and zj .

Then we find that

I(zS) =

Ns
∑

i,j=1

γij

∫

R

F̂ (ω)

ω2
ImĜ(ω, zi, z

S)ImĜ(ω, zj , z
S)dω

≃
Ns
∑

i=1

γiiQ(zS , zi),

provided the sources are well separated, where Q is defined as in (3.5):

Q(zS , z) =

∫

R

F̂ (ω)

ω2
ImĜ(ω, z, zS)2dω.
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In particular, in a three-dimensional homogeneous medium:

Q(zS , z) =
1

16π2

∫

R

F̂ (ω)sinc2(ω|z − zS |)dω.

This shows that the functional Q indeed exhibits peaks at the locations of the noise sources.

Once the local maxima ẑi, i = 1, . . . , Ns, have been estimated, it is possible to estimate
the correlation matrix between the noise sources by looking at the functional J at these
points. Indeed we have

J (zS , zS′

) =

Ns
∑

i,j=1

γij

∫

F̂ (ω)

ω2
ImĜ(ω, zi, z

S′

)ImĜ(ω, zj , z
S)dω.

Therefore,

J (zi, zj) = γij

∫

R

F̂ (ω)

ω2
ImĜ(ω, zi, zi)ImĜ(ω, zj , zj)dω.

In particular, in a three-dimensional homogeneous medium, it follows that

J (zi, zj) = J0γij , J0 =
1

16π2

∫

R

F̂ (ω)dω =
1

8π
F (0).

The estimation of correlation matrix can be important in robot sound or microwave source
surveillance and tracking; see, for instance, [15].

5.4. Numerical Experiments for Identifying Correlated Noise Sources. A nu-
merical method to compute efficiently J (z, z′) follows from

J (z, z′) =

∫

R

∫∫

∂Ω

Ĝ(ω,x, z)Ĝ(ω,x, z′)ĈT (ω,x,y)dσ(x)dσ(y)dω

=

∫

R

∫∫

∂Ω

Ĝ(ω,x, z)Ĝ(ω,x, z′)p̂(ω,x)p̂(ω,y)dσ(x)dσ(y)dω

=

∫

R

(∫

∂Ω

Ĝ(ω,x, z)p̂(ω,x)dσ(x)

)(∫

∂Ω

Ĝ(ω,y, z′)p̂(ω,y)dσ(y)

)

dω

= 2π

∫ T

0

v(t, z)v(t, z′)dt,

where the function v can be expressed in the form

v(t,x) =

∫ T

0

vs(t,x)ds,

and the function vs being defined as the solution of

{

1
c2(x)

∂2vs(t,x)
∂t2 −∆vs(t,x) = p(T − s,x)δ∂Ω(x)δ(t− s)

vs(t,x) = 0, ∂tvs(t,x) = 0, for all t < s.
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More generally, the imaging functional JW (z, z′) can be defined by applying J (z, z′)
on the filtered data p̃(t,x) given by

ˆ̃p(ω,x) =

√

W (ω)

F̃(ω)
p̂(ω,x).

In Figure 5.1, we consider four point noise sources with the same power spectral density
(3.16) and with the correlation matrix

ρ =









1
√
2/2

√
2/2 0√

2/2 1 0 0√
2/2 0 1 0
0 0 0 1









.

The top-left figure presents the true distribution K(x). The top-middle figure shows the
reconstruction of K using the imaging functional IW . In particular, it appears that the
source localization is not as efficient as in the case of uncorrelated data, but is sufficient
for locating the noise sources. In the last four figures, we plot the imaging functional
z → JW (zi, z) for each source zi, which allows us to get the following estimate of the cross
correlation matrix:

ρ̂ =









1.000 0.733 0.701 0.061
0.733 1.000 0.049 0.061
0.701 0.049 1.000 0.030
0.061 0.061 0.030 1.000









Note that each correlation is found quite well (
√
2/2 ≃ 0.707). To conclude, some numerical

results associated with the localization of extended Gaussian sources are also shown in Figure
5.2, which shows the same agreement between theoretical and numerical results as in the
case of oint sources.

6. Conclusion. In this work, efficient weighted imaging algorithms for locating noise
sources by cross correlation techniques have been introduced. We have provided a regu-
larization approach to correct the effect of attenuation. We have successfully addressed
the impact of spatial correlation in the noise source localization problem by designing ap-
propriate imaging functionals. Here, we have assumed that the attenuation coefficient is
homogeneous and known a priori. However, in practical situations, this is not the case and
an estimation of attenuation coefficient is necessary. This would be the subject of a further
investigation.
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