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1. (a) Let ∗ be a binary operation over Q+ defined by

x ∗ y =
xy

4
, ∀x, y ∈ Q+.

Determine whether (Q+, ∗) is a group or not? (5 Points)

Ans. Indeed, (Q+, ∗) is a group. Here we show that it satisfies group axioms.

Associativity: For any x, y, z ∈ Q+,

(x ∗ y) ∗ z =
xy

4
∗ z =

(xy/4)z

4
=

xyz

16

and likewise

x ∗ (y ∗ z) = x ∗ yz
4

=
x(yz/4)

4
=

xyz

16
.

Thus, ∗ is associative on Q+.

Identity: It is evident that 4 ∗ x = x ∗ 4 = x for all x ∈ Q+, so e = 4 is an identity
element for (Q+, ∗).
Inverses: For every element x ∈ Q+,

x ∗ 16

x
=

x(16/x)

4
= 4 = e and

16

x
∗ x =

(16/x)x

4
= 4 = e.

Therefore, x−1 = 4/x is the inverse for x ∈ Q+ with the operation ∗.
(b) Let (G, ∗) be a group. Prove that in group G there exist a unique idempotent element.

(5 Points)

Ans. Let (G, ∗) be a group. An element x ∈ G is called idempotent if x ∗ x = x. Let e be
the identity of the group (G, ∗). Certainly, e is idempotent, because e ∗ e = e. Thus, it
only requires to prove uniqueness. Suppose x ∈ G is idempotent, i.e., x ∗ x = x. We
show that x = e. Towards this end, let x′ be the inverse of x in G. Then,

(x ∗ x) ∗ x′ = x ∗ x′ (multiply both sides by x′ on right)

x ∗ (x ∗ x′) = e (associative and inverse properties)

x ∗ e = e (inverse properties)

x = e (identity properties)

Thus, x = e, so G has exactly one idempotent element and it is e.

2. (a) Let (G, ∗) be a group and H,K ⊂ G be subgroups of G. Prove that H ∩K ⊂ G is a
subgroup. (5 Points)
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Ans. Let (G, ∗) be a group and H,K ⊂ G be two subgroups of G. To show that H ∩K is a
subgroup, we show that it satisfies the closure property, possesses the identity element
and contains inverses of all its elements.

Closure Property: Let a, b ∈ H ∩K. It means a, b ∈ H and a, b ∈ K. Because H
and K are subgroups, they are closed so we have a ∗ b ∈ H and a ∗ b ∈ K. Therefore,
a ∗ b ∈ H ∩K.

Identity: Let e ∈ G be the identity element with respect to the operation ∗. Because
H and K are subgroups, they contain e, i.e., e ∈ H and e ∈ K. So, e ∈ H ∩K.

Inverses: Let a ∈ H ∩K. Since (G, ∗) is a group, there exists an element a−1 ∈ G.
Since, H and K are subgroups of G and a ∈ H and a ∈ K, therefore, a−1 ∈ H and
a−1 ∈ K. So, a−1 ∈ H ∩K.

Hence, (H ∩K, ∗) is a subgroup of (G, ∗).
(b) Let (G, ∗) be a group. Prove that

(a ∗ b)−1 = b−1 ∗ a−1, ∀a, b ∈ G.

(5 Points)

Ans. Let a, b ∈ G be arbitrary and a−1, b−1 ∈ G denote the inverses of a, b, respectively.
By the closure property, a ∗ b ∈ G. Then, by group axioms, there exists an element
(a ∗ b)−1 ∈ G that is the inverse of a ∗ b ∈ G, i.e.,

(a ∗ b) ∗ (a ∗ b)−1 = e.

Then, we have

a−1 ∗
(
(a ∗ b) ∗ (a ∗ b)−1

)
= a−1 ∗ e (multiply both sides by a−1 on left)(

a−1 ∗ (a ∗ b)
)
∗ (a ∗ b)−1 = a−1 (associative and identity properties)(

(a−1 ∗ a) ∗ b
)
∗ (a ∗ b)−1 = a−1 (associative property)

(e ∗ b) ∗ (a ∗ b)−1 = a−1 (inverse property)

b ∗ (a ∗ b)−1 = a−1 (identity property)

b−1 ∗
(
b ∗ (a ∗ b)−1

)
= b−1 ∗ a−1 (multiply both sides by b−1 on left)(

b−1 ∗ b
)
∗ (a ∗ b)−1 = b−1 ∗ a−1 (associative property)

e ∗ (a ∗ b)−1 = b−1 ∗ a−1 (inverse property)

(a ∗ b)−1 = b−1 ∗ a−1 (identity property)

Hence, proved.

3. (a) Let (G, ∗), (H, o) and (M, •) be three groups. Let f : G → H and g : H → M
be homomorphism. Prove that the composition gf : G → M is homomorphism. (5
Points)
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Ans. Let a, b ∈ G. For the composite function gf we have

gf(a ∗ b) =g (f(a ∗ b)) (definition of composition)

=g (f(a)of(b)) (homomorphism of f : G→ H)

=g (f(a)) • g (f(b)) (homomorphism of g : H →M)

=gf(a) • gf(b) (definition of composition).

Therefore, gf : G→M is a homomorphism.

(b) Let (G, ∗) be a group and H ⊂ G be subgroup of G. Let us define a relation on G
using H as follows.

x, y ∈ G, x ∼ y ⇐⇒ x−1 ∗ y ∈ H. (*)

Prove that (*) gives an equivalence relation on G. (5 Points)

Ans. We show that the relation ∼ defined in the question is reflexive, symmetric and tran-
sitive.

Reflexive: We need to prove that x ∼ x for all x ∈ G. Note that x−1 ∗ x = e and
e ∈ H as H is a subgroup. Therefore, x−1 ∗ x = e ∈ H for all x ∈ G. Therefore, x ∼ x
for all x ∈ G.

Symmetric: Let x, y ∈ G such that x ∼ y. We show that y ∼ x. Note that x ∼ y
implies x−1 ∗ y ∈ H. As H is a subgroup,

(
x−1 ∗ y

)−1 ∈ H. by Question 2(b),(
x−1 ∗ y

)−1
= y−1 ∗ (x−1)−1 = y−1 ∗ x ∈ H. Therefore, y ∼ x for all x, y ∈ G.

Transitive: Let x, y, z ∈ G such that x ∼ y and y ∼ z. Then x−1 ∗ y ∈ H and
y−1 ∗ z ∈ H. Since H is a subgroup of G, by closure property (x−1 ∗ y) ∗ (y−1 ∗ z) ∈ H.
But,

(x−1 ∗ y) ∗ (y−1 ∗ z) =x−1 ∗
(
y ∗ (y−1 ∗ z)

)
(associative property)

=x−1 ∗
(
(y ∗ y−1) ∗ z

)
(associative property)

=x−1 ∗ (e ∗ z) (inverse property)

=x−1 ∗ z (inverse property).

Therefore, x−1 ∗ z ∈ H and thus x ∼ z.

Hence, ∼ is an equivalence relation.

“Don’t let what you cannot do interfere with what you can do” — John Wooden.
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