1. (a) Let $*$ be a binary operation over \mathbb{Q}^{+}defined by

$$
x * y=\frac{x y}{4}, \quad \forall x, y \in \mathbb{Q}^{+} .
$$

Determine whether $\left(\mathbb{Q}^{+}, *\right)$ is a group or not? (5 Points)
Ans. Indeed, $\left(\mathbb{Q}^{+}, *\right)$ is a group. Here we show that it satisfies group axioms.
Associativity: For any $x, y, z \in \mathbb{Q}^{+}$,

$$
(x * y) * z=\frac{x y}{4} * z=\frac{(x y / 4) z}{4}=\frac{x y z}{16}
$$

and likewise

$$
x *(y * z)=x * \frac{y z}{4}=\frac{x(y z / 4)}{4}=\frac{x y z}{16} .
$$

Thus, $*$ is associative on \mathbb{Q}^{+}.
Identity: It is evident that $4 * x=x * 4=x$ for all $x \in \mathbb{Q}^{+}$, so $e=4$ is an identity element for $\left(\mathbb{Q}^{+}, *\right)$.
Inverses: For every element $x \in \mathbb{Q}^{+}$,

$$
x * \frac{16}{x}=\frac{x(16 / x)}{4}=4=e \quad \text { and } \quad \frac{16}{x} * x=\frac{(16 / x) x}{4}=4=e .
$$

Therefore, $x^{-1}=4 / x$ is the inverse for $x \in \mathbb{Q}^{+}$with the operation $*$.
(b) Let $(G, *)$ be a group. Prove that in group G there exist a unique idempotent element. (5 Points)
Ans. Let $(G, *)$ be a group. An element $x \in G$ is called idempotent if $x * x=x$. Let e be the identity of the group ($G, *$). Certainly, e is idempotent, because $e * e=e$. Thus, it only requires to prove uniqueness. Suppose $x \in G$ is idempotent, i.e., $x * x=x$. We show that $x=e$. Towards this end, let x^{\prime} be the inverse of x in G. Then,

$$
\begin{array}{rlr}
(x * x) * x^{\prime} & =x * x^{\prime} & \text { (multiply both sides by } x^{\prime} \text { on right) } \\
x *\left(x * x^{\prime}\right) & =e & \text { (associative and inverse properties) } \\
x * e & =e & \text { (inverse properties) } \\
x & =e & \text { (identity properties) }
\end{array}
$$

Thus, $x=e$, so G has exactly one idempotent element and it is e.
2. (a) Let $(G, *)$ be a group and $H, K \subset G$ be subgroups of G. Prove that $H \cap K \subset G$ is a subgroup. (5 Points)

Ans. Let $(G, *)$ be a group and $H, K \subset G$ be two subgroups of G. To show that $H \cap K$ is a subgroup, we show that it satisfies the closure property, possesses the identity element and contains inverses of all its elements.
Closure Property: Let $a, b \in H \cap K$. It means $a, b \in H$ and $a, b \in K$. Because H and K are subgroups, they are closed so we have $a * b \in H$ and $a * b \in K$. Therefore, $a * b \in H \cap K$.
Identity: Let $e \in G$ be the identity element with respect to the operation $*$. Because H and K are subgroups, they contain e, i.e., $e \in H$ and $e \in K$. So, $e \in H \cap K$.
Inverses: Let $a \in H \cap K$. Since $(G, *)$ is a group, there exists an element $a^{-1} \in G$. Since, H and K are subgroups of G and $a \in H$ and $a \in K$, therefore, $a^{-1} \in H$ and $a^{-1} \in K$. So, $a^{-1} \in H \cap K$.
Hence, $(H \cap K, *)$ is a subgroup of $(G, *)$.
(b) Let $(G, *)$ be a group. Prove that

$$
(a * b)^{-1}=b^{-1} * a^{-1}, \quad \forall a, b \in G .
$$

(5 Points)
Ans. Let $a, b \in G$ be arbitrary and $a^{-1}, b^{-1} \in G$ denote the inverses of a, b, respectively. By the closure property, $a * b \in G$. Then, by group axioms, there exists an element $(a * b)^{-1} \in G$ that is the inverse of $a * b \in G$, i.e.,

$$
(a * b) *(a * b)^{-1}=e .
$$

Then, we have

$$
\begin{array}{rlr}
a^{-1} *\left((a * b) *(a * b)^{-1}\right) & =a^{-1} * e & \text { (multiply both sides by } a^{-1} \text { on left) } \\
\left(a^{-1} *(a * b)\right) *(a * b)^{-1} & =a^{-1} & \text { (associative and identity properties) } \\
\left(\left(a^{-1} * a\right) * b\right) *(a * b)^{-1} & =a^{-1} & \text { (associative property) } \\
(e * b) *(a * b)^{-1} & =a^{-1} & \text { (inverse property) } \\
b *(a * b)^{-1} & =a^{-1} & \text { (identity property) } \\
b^{-1} *\left(b *(a * b)^{-1}\right) & =b^{-1} * a^{-1} & \text { (multiply both sides by } b^{-1} \text { on left) } \\
\left(b^{-1} * b\right) *(a * b)^{-1} & =b^{-1} * a^{-1} & \text { (associative property) } \\
e *(a * b)^{-1} & =b^{-1} * a^{-1} & \text { (inverse property) } \\
(a * b)^{-1} & =b^{-1} * a^{-1} & \text { (identity property) }
\end{array}
$$

Hence, proved.
3. (a) Let $(G, *),(H, o)$ and (M, \bullet) be three groups. Let $f: G \rightarrow H$ and $g: H \rightarrow M$ be homomorphism. Prove that the composition $g f: G \rightarrow M$ is homomorphism. (5 Points)

Ans. Let $a, b \in G$. For the composite function $g f$ we have

$$
\begin{aligned}
g f(a * b) & =g(f(a * b)) \\
& =g(f(a) o f(b)) \\
& =g(f(a)) \bullet g(f(b)) \\
& =g f(a) \bullet g f(b)
\end{aligned}
$$

(definition of composition)
(homomorphism of $f: G \rightarrow H$)
(homomorphism of $g: H \rightarrow M$)
(definition of composition).
Therefore, $g f: G \rightarrow M$ is a homomorphism.
(b) Let $(G, *)$ be a group and $H \subset G$ be subgroup of G. Let us define a relation on G using H as follows.

$$
\begin{equation*}
x, y \in G, \quad x \sim y \Longleftrightarrow x^{-1} * y \in H \tag{*}
\end{equation*}
$$

Prove that $\left({ }^{*}\right)$ gives an equivalence relation on G. (5 Points)
Ans. We show that the relation \sim defined in the question is reflexive, symmetric and transitive.
Reflexive: We need to prove that $x \sim x$ for all $x \in G$. Note that $x^{-1} * x=e$ and $e \in H$ as H is a subgroup. Therefore, $x^{-1} * x=e \in H$ for all $x \in G$. Therefore, $x \sim x$ for all $x \in G$.
Symmetric: Let $x, y \in G$ such that $x \sim y$. We show that $y \sim x$. Note that $x \sim y$ implies $x^{-1} * y \in H$. As H is a subgroup, $\left(x^{-1} * y\right)^{-1} \in H$. by Question $2(\mathrm{~b})$, $\left(x^{-1} * y\right)^{-1}=y^{-1} *\left(x^{-1}\right)^{-1}=y^{-1} * x \in H$. Therefore, $y \sim x$ for all $x, y \in G$.
Transitive: Let $x, y, z \in G$ such that $x \sim y$ and $y \sim z$. Then $x^{-1} * y \in H$ and $y^{-1} * z \in H$. Since H is a subgroup of G, by closure property $\left(x^{-1} * y\right) *\left(y^{-1} * z\right) \in H$. But,

$$
\begin{array}{rlr}
\left(x^{-1} * y\right) *\left(y^{-1} * z\right) & =x^{-1} *\left(y *\left(y^{-1} * z\right)\right) \\
& =x^{-1} *\left(\left(y * y^{-1}\right) * z\right) & \\
& =x^{-1} *(e * z) & \text { (associative property) } \\
& =x^{-1} * z & \text { (associative property) } \\
\text { (inverse property) } \\
\text { (inverse property) }
\end{array}
$$

Therefore, $x^{-1} * z \in H$ and thus $x \sim z$.
Hence, \sim is an equivalence relation.

