

1. (a) Let * be a binary operation over \mathbb{Q}^+ defined by

$$x * y = \frac{xy}{4}, \quad \forall x, y \in \mathbb{Q}^+.$$

Determine whether $(\mathbb{Q}^+, *)$ is a group or not? (5 Points)

Ans. Indeed, $(\mathbb{Q}^+, *)$ is a group. Here we show that it satisfies group axioms. Associativity: For any $x, y, z \in \mathbb{Q}^+$,

$$(x * y) * z = \frac{xy}{4} * z = \frac{(xy/4)z}{4} = \frac{xyz}{16}$$

and likewise

$$x * (y * z) = x * \frac{yz}{4} = \frac{x(yz/4)}{4} = \frac{xyz}{16}$$

Thus, * is associative on \mathbb{Q}^+ .

Identity: It is evident that 4 * x = x * 4 = x for all $x \in \mathbb{Q}^+$, so e = 4 is an identity element for $(\mathbb{Q}^+, *)$.

Inverses: For every element $x \in \mathbb{Q}^+$,

$$x * \frac{16}{x} = \frac{x(16/x)}{4} = 4 = e$$
 and $\frac{16}{x} * x = \frac{(16/x)x}{4} = 4 = e.$

Therefore, $x^{-1} = 4/x$ is the inverse for $x \in \mathbb{Q}^+$ with the operation *.

- (b) Let (G,*) be a group. Prove that in group G there exist a unique idempotent element.(5 Points)
- Ans. Let (G, *) be a group. An element $x \in G$ is called idempotent if x * x = x. Let e be the identity of the group (G, *). Certainly, e is idempotent, because e * e = e. Thus, it only requires to prove uniqueness. Suppose $x \in G$ is idempotent, i.e., x * x = x. We show that x = e. Towards this end, let x' be the inverse of x in G. Then,

$(x \ast x) \ast x' = x \ast x'$	(multiply both sides by x' on right)
$x \ast (x \ast x') = e$	(associative and inverse properties)
x * e = e	(inverse properties)
x = e	(identity properties)

Thus, x = e, so G has exactly one idempotent element and it is e.

2. (a) Let (G, *) be a group and $H, K \subset G$ be subgroups of G. Prove that $H \cap K \subset G$ is a subgroup. (5 Points)

Ans. Let (G, *) be a group and $H, K \subset G$ be two subgroups of G. To show that $H \cap K$ is a subgroup, we show that it satisfies the closure property, possesses the identity element and contains inverses of all its elements.

Closure Property: Let $a, b \in H \cap K$. It means $a, b \in H$ and $a, b \in K$. Because H and K are subgroups, they are closed so we have $a * b \in H$ and $a * b \in K$. Therefore, $a * b \in H \cap K$.

Identity: Let $e \in G$ be the identity element with respect to the operation *. Because H and K are subgroups, they contain e, i.e., $e \in H$ and $e \in K$. So, $e \in H \cap K$.

Inverses: Let $a \in H \cap K$. Since (G, *) is a group, there exists an element $a^{-1} \in G$. Since, H and K are subgroups of G and $a \in H$ and $a \in K$, therefore, $a^{-1} \in H$ and $a^{-1} \in K$. So, $a^{-1} \in H \cap K$.

Hence, $(H \cap K, *)$ is a subgroup of (G, *).

(b) Let (G, *) be a group. Prove that

$$(a * b)^{-1} = b^{-1} * a^{-1}, \quad \forall a, b \in G.$$

(5 Points)

Ans. Let $a, b \in G$ be arbitrary and $a^{-1}, b^{-1} \in G$ denote the inverses of a, b, respectively. By the closure property, $a * b \in G$. Then, by group axioms, there exists an element $(a * b)^{-1} \in G$ that is the inverse of $a * b \in G$, i.e.,

$$(a * b) * (a * b)^{-1} = e.$$

Then, we have

 $a^{-1} * ((a * b) * (a * b)^{-1}) = a^{-1} * e$ (multiply both sides by a^{-1} on left) $(a^{-1} * (a * b)) * (a * b)^{-1} = a^{-1}$ (associative and identity properties) $((a^{-1} * a) * b) * (a * b)^{-1} = a^{-1}$ (associative property) $(e * b) * (a * b)^{-1} = a^{-1}$ (inverse property) $b * (a * b)^{-1} = a^{-1}$ (identity property) $b^{-1} * (b * (a * b)^{-1}) = b^{-1} * a^{-1}$ (multiply both sides by b^{-1} on left) $(b^{-1} * b) * (a * b)^{-1} = b^{-1} * a^{-1}$ (associative property) $e * (a * b)^{-1} = b^{-1} * a^{-1}$ (inverse property) $(a * b)^{-1} = b^{-1} * a^{-1}$ (identity property)

Hence, proved.

3. (a) Let (G, *), (H, o) and (M, \bullet) be three groups. Let $f : G \to H$ and $g : H \to M$ be homomorphism. Prove that the composition $gf : G \to M$ is homomorphism. (5 **Points**)

Ans. Let $a, b \in G$. For the composite function gf we have

(definition of composition)	$gf(a * b) = g\left(f(a * b)\right)$
(homomorphism of $f: G \to H$)	$=g\left(f(a)of(b)\right)$
(homomorphism of $g: H \to M$)	$= g\left(f(a)\right) \bullet g\left(f(b)\right)$
(definition of composition).	$=gf(a) \bullet gf(b)$

Therefore, $gf: G \to M$ is a homomorphism.

(b) Let (G, *) be a group and $H \subset G$ be subgroup of G. Let us define a relation on G using H as follows.

$$x, y \in G, \quad x \sim y \iff x^{-1} * y \in H.$$
 (*)

Prove that (*) gives an equivalence relation on G. (5 Points)

Ans. We show that the relation \sim defined in the question is reflexive, symmetric and transitive.

Reflexive: We need to prove that $x \sim x$ for all $x \in G$. Note that $x^{-1} * x = e$ and $e \in H$ as H is a subgroup. Therefore, $x^{-1} * x = e \in H$ for all $x \in G$. Therefore, $x \sim x$ for all $x \in G$.

Symmetric: Let $x, y \in G$ such that $x \sim y$. We show that $y \sim x$. Note that $x \sim y$ implies $x^{-1} * y \in H$. As H is a subgroup, $(x^{-1} * y)^{-1} \in H$. by Question 2(b), $(x^{-1} * y)^{-1} = y^{-1} * (x^{-1})^{-1} = y^{-1} * x \in H$. Therefore, $y \sim x$ for all $x, y \in G$.

Transitive: Let $x, y, z \in G$ such that $x \sim y$ and $y \sim z$. Then $x^{-1} * y \in H$ and $y^{-1} * z \in H$. Since H is a subgroup of G, by closure property $(x^{-1} * y) * (y^{-1} * z) \in H$. But,

(associative property)	$(x^{-1} * y) * (y^{-1} * z) = x^{-1} * (y * (y^{-1} * z))$
(associative property)	$= x^{-1} * \left((y * y^{-1}) * z \right)$
(inverse property)	$=x^{-1}*(e*z)$
(inverse property).	$=x^{-1} * z$

Therefore, $x^{-1} * z \in H$ and thus $x \sim z$. Hence, \sim is an equivalence relation.

"Don't let what you cannot do interfere with what you can do" — John Wooden.