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1. (a) Let ∗ be a binary operation over Q+ defined by

x ∗ y =
xy

4
, ∀x, y ∈ Q+.

Determine whether (Q+, ∗) is a group or not? (5 Points)

(b) Let (G, ∗) be a group. Prove that in group G there exist a unique idempotent element.
(5 Points)

2. (a) Let (G, ∗) be a group and H,K ⊂ G be subgroups of G. Prove that H ∩K ⊂ G is a
subgroup. (5 Points)

(b) Let (G, ∗) be a group. Prove that

(a ∗ b)−1 = b−1 ∗ a−1, ∀a, b ∈ G.

(5 Points)

3. (a) Let (G, ∗), (H, o) and (M, •) be three groups. Let f : G → H and g : H → M
be homomorphism. Prove that the composition gf : G → M is homomorphism. (5
Points)

(b) Let (G, ∗) be a group and H ⊂ G be subgroup of G. Let us define a relation on G
using H as follows.

x, y ∈ G, x ∼ y ⇐⇒ x−1 ∗ y ∈ H. (*)

Prove that (*) gives an equivalence relation on G. (5 Points)

“Don’t let what you cannot do interfere with what you can do” — John Wooden.
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