1. (a) Classify the integral equations as linear, non-linear, homogeneous, non-homogeneous, singular, non-singular, first kind, second kind, Volterra and Fredholm.

(2.5+2.5 Points)

(i) $1+\frac{\varphi(x)}{\cos x}-\lambda \int_{0}^{\pi / 3} \frac{\sin ^{2}(x-t) \varphi(t)}{t^{2}} d t=0$.

Ans. Linear, non-homogeneous, singular, second kind Fredholm integral equation.
(ii) $2 \psi(x)+3 \int_{0}^{7} M(x, t) \psi(t) d t=0$, where $M(x, t):= \begin{cases}x^{2}-t^{2}, & 0 \leq t \leq x, \\ t^{2}+x^{2}, & x \leq t \leq 7 .\end{cases}$

Ans. Linear, homogeneous, non-singular, second kind Fredholm integral equation.
(b) Show that $y(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}}$ is a solution to the integral equation

$$
\begin{equation*}
y(x)=\frac{1}{\left(1+x^{2}\right)}-\int_{0}^{x} \frac{t}{\left(1+x^{2}\right)} y(t) d t . \quad \quad(5 \text { Points }) \tag{1}
\end{equation*}
$$

Ans. Since

$$
\begin{aligned}
\text { R.H.S } & =\frac{1}{\left(1+x^{2}\right)}-\int_{0}^{x} \frac{t y(t)}{\left(1+x^{2}\right)} d t \\
& =\frac{1}{\left(1+x^{2}\right)}\left[1-\int_{0}^{x} \frac{t}{\left(1+t^{2}\right)^{3 / 2}} d t\right] \\
& =\frac{1}{\left(1+x^{2}\right)}\left[1-\frac{1}{2} \int_{0}^{x} 2 t\left(1+t^{2}\right)^{-3 / 2} d t\right] \\
& =\frac{1}{\left(1+x^{2}\right)}\left[1+\left[\left(1+t^{2}\right)^{-1 / 2}\right]_{0}^{x}\right] \\
& =\frac{1}{\left(1+x^{2}\right)}\left[1+\left[\left(1+x^{2}\right)^{-1 / 2}-1\right]\right] \\
& =\frac{1}{\left(1+x^{2}\right)\left(1+x^{2}\right)^{1 / 2}} \\
& =y(x) \\
& =\text { L.H.S., }
\end{aligned}
$$

therefore, $y(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}}$ is a solution to the integral equation (1).
2. Find the spectrum of the integral equation

$$
\begin{equation*}
g(x)=\lambda \int_{-\pi}^{\pi} x \sin t g(t) d t, \tag{2}
\end{equation*}
$$

and eigen solutions. Discuss qualities of the spectrum (any two).

Ans. Note that equations (2) is a Fredholm equation with separable kernel $K(x, t)=x \sin t$. Therefore, the solution is

$$
\begin{equation*}
g(x)=C \lambda x \tag{a}
\end{equation*}
$$

where

$$
C:=\int_{-\pi}^{\pi} \sin t g(t) d t
$$

To find the value of C, multiply equation (2) with $\sin x$ and integrate over $(-\pi, \pi)$. This yields,

$$
C=\lambda \int_{-\pi}^{\pi} x \sin x d x \int_{-\pi}^{\pi} \sin t g(t) d t=C \lambda \int_{-\pi}^{\pi} x \sin x d x
$$

or simply

$$
C\left[1-\lambda \int_{-\pi}^{\pi} x \sin x d x\right]=0
$$

Since,

$$
\int_{-\pi}^{\pi} x \sin x d x=[-x \cos x+\sin x]_{-\pi}^{\pi}=-\pi \cos \pi+\sin \pi-\pi \cos (-\pi)-\sin (-\pi)=2 \pi,
$$

we have

$$
C[1-2 \pi \lambda]=0 .
$$

Therefore, for non-trivial solutions, we must have $\lambda=1 / 2 \pi$. As this is the only possible value of λ rendering a non-trivial solution, the spectrum of (2) consists of one element $\lambda=1 / 2 \pi$. Moreover, since the only solution associated to eigenvalue $\lambda=1 / 2 \pi$ is $g(x)=C x / 2 \pi$, the multiplicity of the eigenvalue is 1 . Thus, the spectrum of the integral equation (2) is finite and discrete, and the only element has multiplicity 1.

($6+2+2$ Points)

3. Solve and identify the resolvent kernel of the integral equation

$$
\begin{equation*}
g(x)=x+\lambda \int_{-\pi}^{\pi} x \sin t g(t) d t . \quad \quad(\mathbf{7}+\mathbf{3} \text { Points }) \tag{3}
\end{equation*}
$$

Ans. Note that equation (3) is a Fredholm with separable kernel $K(x, t)=x \sin t$. Therefore, the solution is

$$
\begin{equation*}
g(x)=x+C \lambda x, \tag{b}
\end{equation*}
$$

with

$$
C:=\int_{-\pi}^{\pi} \sin t g(t) d t
$$

To find the value of C, multiply equation (3) with $\sin x$ and integrate over $(-\pi, \pi)$. This yields,

$$
C=\int_{-\pi}^{\pi} t \sin t d t+\lambda \int_{-\pi}^{\pi} x \sin x d x \int_{-\pi}^{\pi} \sin t g(t) d t
$$

or simply

$$
C\left[1-\lambda \int_{-\pi}^{\pi} x \sin x d x\right]=\int_{-\pi}^{\pi} t \sin t d t
$$

As calculated in the previous question, $\int_{\pi}^{\pi} x \sin x d x=2 \pi$. Therefore, for $\lambda \neq 1 / 2 \pi$, we have

$$
C=\frac{1}{1-2 \pi \lambda} \int_{-\pi}^{\pi} x \sin t g(t) d t
$$

Substituting the value of C in Eq. (b), we arrive at the solution in the form

$$
g(x)=x+\int_{-\pi}^{\pi}\left[\frac{\lambda x \sin t}{1-2 \pi \lambda}\right] t d t=x+\int_{-\pi}^{\pi} R(x, t ; \lambda) t d t
$$

where $R(x, t ; \lambda):=\frac{\lambda x \sin t}{1-2 \pi \lambda}$ is the resolvent kernel. On simplification, we arrive at the solution

$$
g(x)=x+\frac{2 \pi \lambda}{1-2 \pi \lambda} x=\frac{x}{1-2 \pi \lambda} .
$$

4. Convert the integral equation

$$
\begin{equation*}
u(\xi)=\lambda \int_{0}^{1} \kappa(\xi, t) u(t) d t \tag{4}
\end{equation*}
$$

with

$$
\kappa(\xi, t)= \begin{cases}\xi(1-t), & \xi \leq t \leq 1 \tag{5}\\ t(1-\xi), & 0 \leq t \leq \xi\end{cases}
$$

to a boundary value problem with suitable boundary conditions. ($8+2$ Points)
Ans. Remark that the integral equation (4) together with (5) can be rewritten as

$$
\begin{equation*}
u(\xi)=\lambda \int_{0}^{\xi} t(1-\xi) u(t) d t+\lambda \int_{\xi}^{1} \xi(1-t) u(t) d t \tag{c}
\end{equation*}
$$

Differentiating both sides with respect to ξ, we get

$$
\begin{aligned}
u^{\prime}(\xi) & =\lambda \xi(1-\xi) u(\xi)+\lambda \int_{0}^{\xi} \frac{\partial}{\partial \xi}(1-\xi) t u(t) d t-\lambda \xi(1-\xi) u(\xi) u(\xi)+\lambda \int_{1}^{\xi} \frac{\partial}{\partial \xi} \xi(1-t) u(t) d t \\
& =-\lambda \int_{0}^{\xi} t u(t) d t+\lambda \int_{\xi}^{1}(1-t) u(t) d t
\end{aligned}
$$

Differentiating again, we get

$$
u^{\prime \prime}(\xi)=-\lambda[\xi u(\xi)-0+0]+\lambda[0-(1-\xi) u(\xi)+0]=-\lambda u(\xi)
$$

Therefore, $u(\xi)$ satisfies the second order ordinary differential equation

$$
u^{\prime \prime}(\xi)+\lambda u(\xi)=0
$$

For boundary conditions, we consider equation (c) and substitute $\xi=0$ and $\xi=1$ to get, respectively,

$$
u(0)=0 \quad \text { and } \quad u(1)=0
$$

Therefore, integral equation (4) can be converted to the boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(\xi)+\lambda u(\xi)=0, \quad \xi \in(0,1) \\
u(0)=0=u(1)
\end{array}\right.
$$

5. Using the potential function $\varphi(x):=\frac{d^{2} v}{d x^{2}}$, form an integral equation corresponding to the initial value problem

$$
\begin{align*}
& \frac{d^{2} v}{d x^{2}}+x \frac{d v}{d x}+v=0 \tag{6}\\
& v(0)=1 \tag{7}\\
& \frac{d v}{d x}(0)=0 \tag{8}
\end{align*}
$$

(10 Points)

Ans. Let

$$
\begin{equation*}
\varphi(x):=\frac{d^{2} v}{d x^{2}} \tag{d}
\end{equation*}
$$

Then, integrating (d) over the interval $(0, x)$, and using the first fundamental theorem of Calculus, one arrives at

$$
\frac{d v}{d x}(x)-\frac{d v}{d x}(0)=\int_{0}^{x} \varphi(t) d t
$$

Invoking (8), one finds out that

$$
\begin{equation*}
\frac{d v}{d x}=\int_{0}^{x} \varphi(t) d t \tag{e}
\end{equation*}
$$

Once again, integrating (e) over the interval ($0, x$) , and using the first fundamental theorem of Calculus, one arrives at

$$
v(x)-v(0)=\int_{0}^{x} \int_{0}^{t} \varphi(\xi) d \xi d t=\int_{0}^{x}(x-t) \varphi(t) d t
$$

This time we invoke (8) to eliminate $v(0)$, which yields

$$
\begin{equation*}
v(x)=1+\int_{0}^{x}(x-t) \varphi(t) d t \tag{f}
\end{equation*}
$$

Together with Eqs. (d), (e), and (f), differential equation (6) furnishes

$$
\varphi(x)+x\left[\int_{0}^{x} \varphi(t) d t\right]+\left[1+\int_{0}^{x}(x-t) \varphi(t) d t\right]=0
$$

or equivalently,

$$
\varphi(x)=-1-\int_{0}^{x}(2 x-t) \varphi(t) d t
$$

"Don't let what you cannot do interfere with what you can do"- John Wooden.

