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Solution Key

1. (a) Classify the integral equations as linear, non-linear, homogeneous, non-homogeneous,
singular, non-singular, first kind, second kind, Volterra and Fredholm.

(2.5+2.5 Points)

(i) 1 +
ϕ(x)

cosx
− λ

∫ π/3

0

sin2(x− t)ϕ(t)

t2
dt = 0.

Ans. Linear, non-homogeneous, singular, second kind Fredholm integral equation.

(ii) 2ψ(x) + 3

∫ 7

0
M(x, t)ψ(t)dt = 0, where M(x, t) :=

{
x2 − t2, 0 ≤ t ≤ x,
t2 + x2, x ≤ t ≤ 7.

Ans. Linear, homogeneous, non-singular, second kind Fredholm integral equation.

(b) Show that y(x) =
1

(1 + x2)3/2
is a solution to the integral equation

y(x) =
1

(1 + x2)
−
∫ x

0

t

(1 + x2)
y(t)dt. (5 Points) (1)

Ans. Since

R.H.S =
1

(1 + x2)
−
∫ x

0

ty(t)

(1 + x2)
dt

=
1

(1 + x2)

[
1−

∫ x

0

t

(1 + t2)3/2
dt

]
=

1

(1 + x2)

[
1− 1

2

∫ x

0
2t(1 + t2)−3/2dt

]
=

1

(1 + x2)

[
1 +

[
(1 + t2)−1/2

]x
0

]
=

1

(1 + x2)

[
1 +

[
(1 + x2)−1/2 − 1

]]
=

1

(1 + x2)(1 + x2)1/2

=y(x)

=L.H.S.,

therefore, y(x) =
1

(1 + x2)3/2
is a solution to the integral equation (1).

2. Find the spectrum of the integral equation

g(x) = λ

∫ π

−π
x sin t g(t)dt, (2)

and eigen solutions. Discuss qualities of the spectrum (any two).
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Ans. Note that equations (2) is a Fredholm equation with separable kernel K(x, t) = x sin t.
Therefore, the solution is

g(x) = Cλx, (a)

where

C :=

∫ π

−π
sin tg(t)dt.

To find the value of C, multiply equation (2) with sinx and integrate over (−π, π). This
yields,

C = λ

∫ π

−π
x sinxdx

∫ π

−π
sin tg(t)dt = Cλ

∫ π

−π
x sinxdx,

or simply

C

[
1− λ

∫ π

−π
x sinxdx

]
= 0.

Since,∫ π

−π
x sinxdx =

[
− x cosx+ sinx

]π
−π

= −π cosπ + sinπ − π cos(−π)− sin(−π) = 2π,

we have

C [1− 2πλ] = 0.

Therefore, for non-trivial solutions, we must have λ = 1/2π. As this is the only possible value
of λ rendering a non-trivial solution, the spectrum of (2) consists of one element λ = 1/2π.
Moreover, since the only solution associated to eigenvalue λ = 1/2π is g(x) = Cx/2π, the
multiplicity of the eigenvalue is 1. Thus, the spectrum of the integral equation (2) is finite
and discrete, and the only element has multiplicity 1.

(6+2+2 Points)

3. Solve and identify the resolvent kernel of the integral equation

g(x) = x+ λ

∫ π

−π
x sin t g(t)dt. (7+3 Points) (3)

Ans. Note that equation (3) is a Fredholm with separable kernel K(x, t) = x sin t. Therefore, the
solution is

g(x) = x+ Cλx, (b)

with

C :=

∫ π

−π
sin tg(t)dt.
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To find the value of C, multiply equation (3) with sinx and integrate over (−π, π). This
yields,

C =

∫ π

−π
t sin tdt+ λ

∫ π

−π
x sinxdx

∫ π

−π
sin tg(t)dt.

or simply

C

[
1− λ

∫ π

−π
x sinxdx

]
=

∫ π

−π
t sin tdt.

As calculated in the previous question,

∫ π

π
x sinxdx = 2π. Therefore, for λ 6= 1/2π, we have

C =
1

1− 2πλ

∫ π

−π
x sin tg(t)dt.

Substituting the value of C in Eq. (b), we arrive at the solution in the form

g(x) = x+

∫ π

−π

[
λx sin t

1− 2πλ

]
t dt = x+

∫ π

−π
R(x, t;λ) t dt,

where R(x, t;λ) :=
λx sin t

1− 2πλ
is the resolvent kernel. On simplification, we arrive at the

solution

g(x) = x+
2πλ

1− 2πλ
x =

x

1− 2πλ
.

4. Convert the integral equation

u(ξ) = λ

∫ 1

0
κ(ξ, t)u(t)dt, (4)

with

κ(ξ, t) =

{
ξ(1− t), ξ ≤ t ≤ 1,

t(1− ξ), 0 ≤ t ≤ ξ,
(5)

to a boundary value problem with suitable boundary conditions. (8+2 Points)

Ans. Remark that the integral equation (4) together with (5) can be rewritten as

u(ξ) = λ

∫ ξ

0
t(1− ξ)u(t)dt+ λ

∫ 1

ξ
ξ(1− t)u(t)dt. (c)
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Differentiating both sides with respect to ξ, we get

u′(ξ) =λξ(1− ξ)u(ξ) + λ

∫ ξ

0

∂

∂ξ
(1− ξ)tu(t)dt− λξ(1− ξ)u(ξ)u(ξ) + λ

∫ ξ

1

∂

∂ξ
ξ(1− t)u(t)dt

=− λ
∫ ξ

0
tu(t)dt+ λ

∫ 1

ξ
(1− t)u(t)dt.

Differentiating again, we get

u′′(ξ) = −λ [ξu(ξ)− 0 + 0] + λ [0− (1− ξ)u(ξ) + 0] = −λu(ξ).

Therefore, u(ξ) satisfies the second order ordinary differential equation

u′′(ξ) + λu(ξ) = 0.

For boundary conditions, we consider equation (c) and substitute ξ = 0 and ξ = 1 to get,
respectively,

u(0) = 0 and u(1) = 0.

Therefore, integral equation (4) can be converted to the boundary value problem{
u′′(ξ) + λu(ξ) = 0, ξ ∈ (0, 1),

u(0) = 0 = u(1).

5. Using the potential function ϕ(x) :=
d2v

dx2
, form an integral equation corresponding to the

initial value problem

d2v

dx2
+ x

dv

dx
+ v = 0, (6)

v(0) = 1, (7)

dv

dx
(0) = 0. (8)

(10 Points)

Ans. Let

ϕ(x) :=
d2v

dx2
. (d)

Then, integrating (d) over the interval (0, x), and using the first fundamental theorem of
Calculus, one arrives at

dv

dx
(x)− dv

dx
(0) =

∫ x

0
ϕ(t)dt.
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Invoking (8), one finds out that

dv

dx
=

∫ x

0
ϕ(t)dt. (e)

Once again, integrating (e) over the interval (0, x), and using the first fundamental theorem
of Calculus, one arrives at

v(x)− v(0) =

∫ x

0

∫ t

0
ϕ(ξ)dξ dt =

∫ x

0
(x− t)ϕ(t)dt.

This time we invoke (8) to eliminate v(0), which yields

v(x) = 1 +

∫ x

0
(x− t)ϕ(t)dt. (f)

Together with Eqs. (d), (e), and (f), differential equation (6) furnishes

ϕ(x) + x

[∫ x

0
ϕ(t)dt

]
+

[
1 +

∫ x

0
(x− t)ϕ(t)dt

]
= 0.

or equivalently,

ϕ(x) = −1−
∫ x

0
(2x− t)ϕ(t)dt.

“Don’t let what you cannot do interfere with what you can do” — John Wooden.
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