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Defining futures SOLUTION KEY

1. (a) Classify the integral equations as linear, non-linear, homogeneous, non-homogeneous,
singular, non-singular, first kind, second kind, Volterra and Fredholm.

(2.54-2.5 Points)
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Ans. Linear, non-homogeneous, singular, second kind Fredholm integral equation.
x2—t2, 0<t<z,
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Ans. Linear, homogeneous, non-singular, second kind Fredholm integral equation.
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(b) Show that y(z) = is a solution to the integral equation
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therefore, y(z) = m is a solution to the integral equation (1).
x

2. Find the spectrum of the integral equation

glx) =X ! xsint g(t)dt, (2)

—T

and eigen solutions. Discuss qualities of the spectrum (any two).



Ans.

Ans.

Note that equations (2) is a Fredholm equation with separable kernel K(z,t) = zsint.
Therefore, the solution is

g(x) = CAz, (a)

where

C = sintg(t)dt.
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To find the value of C, multiply equation (2) with sinz and integrate over (—m, 7). This
yields,

C = )\/ J:sinxda:/ Sintg(t)dt:C')\/ xsinxdx,

or simply
C [1 — /\/ a:sinxd:z:] =0.
Since,
™ ™
/ zsinxdr = | — xcosx + sin x] = —mcosm +sinm — 7w cos(—m) — sin(—7) = 2,
—TT —T
we have
C[1—27A] = 0.

Therefore, for non-trivial solutions, we must have A = 1/27. As this is the only possible value
of A rendering a non-trivial solution, the spectrum of (2) consists of one element A = 1/27.
Moreover, since the only solution associated to eigenvalue A = 1/27 is g(x) = Cz /27, the
multiplicity of the eigenvalue is 1. Thus, the spectrum of the integral equation (2) is finite
and discrete, and the only element has multiplicity 1.

(64242 Points)

. Solve and identify the resolvent kernel of the integral equation

K
g(x) =z + )\/ xsint g(t)dt. (743 Points) (3)
—T
Note that equation (3) is a Fredholm with separable kernel K (z,t) = xsint. Therefore, the
solution is

g(x) =z + Chz, (b)

with
C:= sintg(t)dt.

—T



To find the value of C, multiply equation (3) with sinz and integrate over (—m, 7). This
yields,

C= tsintdt+)\/ xsinxda:/ sintg(t)dt.

—T —T —T

or simply

C{l—)\/ xsinxd:):] —/ tsin tdt.

™

As calculated in the previous question, / xsinxzdx = 27. Therefore, for A # 1/27, we have

T

1 L
T omx /_7T xsintg(t)dt.

Substituting the value of C'in Eq. (b), we arrive at the solution in the form

C =

T [ Axsint T
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where R(m,t, A) = m
— 2T

solution

is the resolvent kernel. On simplification, we arrive at the
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4. Convert the integral equation

1
u(€) = A /O w(E, tyult)dt, (4)

with

- 5(1_t)a EStSL
K(S’t)_{tﬂ—f), 0<t<e, ®)

to a boundary value problem with suitable boundary conditions. (8+2 Points)

Ans. Remark that the integral equation (4) together with (5) can be rewritten as

13 1
w(€) = A /0 H1 = E)ult)dt + A /é 01— Hut)dt. (©)



Ans.

Differentiating both sides with respect to &, we get

13 £
W (€) =XE(L — E)u(€) + A 865(1 — )tult)dt — AE(L - Eu(€)u(€) + A (;1 (1 t)ut)ds
0 1
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. )\/ tu(t)dt + )\/ (1= u(t)dt.
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Differentiating again, we get
u(€) = —Afgu(§) =0+ 0] + A0 — (1 = &u(§) + 0] = —Au(§).
Therefore, u(§) satisfies the second order ordinary differential equation
! (€) + Mu(€) = 0,

For boundary conditions, we consider equation (c) and substitute £ = 0 and £ = 1 to get,
respectively,

u(0) =0 and u(1l) = 0.

Therefore, integral equation (4) can be converted to the boundary value problem

u”(8) + Au(§) = 0, §€(0,1),
u(0) =0 = u(l).
. . . d*v . . .
. Using the potential function ¢(z) := 2’ form an integral equation corresponding to the
x
initial value problem
d%v dv
v(0) =1, (7)
dv
—(0) =0. 8
“) (3)
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Let
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= . d
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Then, integrating (d) over the interval (0,z), and using the first fundamental theorem of
Calculus, one arrives at

@ - F 0= [ e



Invoking (8), one finds out that

o= [ et (e)

Once again, integrating (e) over the interval (0, z), and using the first fundamental theorem
of Calculus, one arrives at
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This time we invoke (8) to eliminate v(0), which yields
v(z) =1 +/ (x —t)p(t)dt. (f)
0
Together with Egs. (d), (e), and (f), differential equation (6) furnishes

o(z)+ UO w(t)dt} + {1 + /Oz(a: = t)cp(t)dt} = 0.

or equivalently,

or)=-1- /;(256 —t)p(t)dt.

“Don’t let what you cannot do interfere with what you can do” — John Wooden.



