\qquad Reg. No.: \qquad Sheet No.: \qquad

Instructions: Use of electronic gadgets, calculators or any course related material is not allowed. Solve Q. 1 Part (a) on the question paper that has to be returned along with answer sheet.

1. (a) Classify the integral equations as linear, non-linear, homogeneous, non-homogeneous, singular, non-singular, first kind, second kind, Volterra and Fredholm.

(2.5+2.5 Points)

(i) $1+\frac{\varphi(x)}{\cos x}-\lambda \int_{0}^{\pi / 3} \frac{\sin ^{2}(x-t) \varphi(t)}{t^{2}} d t=0$.

Ans.
(ii) $2 \psi(x)+3 \int_{0}^{7} M(x, t) \psi(t) d t=0$, where $M(x, t):= \begin{cases}x^{2}-t^{2}, & 0 \leq t \leq x, \\ t^{2}+x^{2}, & x \leq t \leq 7 .\end{cases}$

Ans.
(b) Show that $y(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}}$ is a solution to the integral equation

$$
\begin{equation*}
y(x)=\frac{1}{\left(1+x^{2}\right)}-\int_{0}^{x} \frac{t}{\left(1+x^{2}\right)} y(t) d t . \quad(5 \text { Points }) \tag{1}
\end{equation*}
$$

2. Find the spectrum of the integral equation

$$
\begin{equation*}
g(x)=\lambda \int_{-\pi}^{\pi} x \sin t g(t) d t \tag{2}
\end{equation*}
$$

and eigen solutions. Discuss qualities of the spectrum (any two)?

$$
(6+2+2 \text { Points })
$$

3. Solve and identify the resolvent kernel of the integral equation

$$
\begin{equation*}
g(x)=x+\lambda \int_{-\pi}^{\pi} x \sin t g(t) d t . \quad \quad(\mathbf{7}+\mathbf{3} \text { Points }) \tag{3}
\end{equation*}
$$

4. Convert the integral equation

$$
\begin{equation*}
u(\xi)=\lambda \int_{0}^{1} \kappa(\xi, t) u(t) d t \tag{4}
\end{equation*}
$$

with

$$
\kappa(\xi, t)= \begin{cases}\xi(1-t), & \xi \leq t \leq 1, \tag{5}\\ t(1-\xi), & 0 \leq t \leq \xi\end{cases}
$$

to a boundary value problem with suitable boundary conditions. (8+2 Points)
5. Using the potential function $\varphi(x):=\frac{d^{2} v}{d x^{2}}$, form an integral equation corresponding to the initial value problem

$$
\begin{align*}
& \frac{d^{2} v}{d x^{2}}+x \frac{d v}{d x}+v=0, \tag{6}\\
& v(0)=1, \tag{7}\\
& \frac{d v}{d x}(0)=0 . \tag{8}
\end{align*}
$$

(10 Points)
"Don't let what you cannot do interfere with what you can do"- John Wooden.

