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On the Green function in visco-elastic media
obeying a frequency power-law
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In this work, we present an explicit expression for the Green function in a visco-elastic medium. We choose Szabo
and Wu’s frequency power law model to describe the visco-elastic properties and derive a generalized visco-elastic
wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function
using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of
reconstructing a small anomaly in a visco-elastic medium from wavefield measurements. Copyright © 2011 John Wiley
& Sons, Ltd.
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1. Introduction

The elastic properties of human soft tissues have been exploited in a number of imaging modalities in the recent past, because the
elasticity properties vary significantly in order of magnitude with different tissue types and are closely linked with the pathology of
the tissues and their underlying structure.

Most of the time, medium is considered to be ideal (without any viscous effect), neglecting the fact that a wave loses some of
its energy to the medium and its amplitude decreases with time due to viscosity. An estimation of the viscosity effects, however,
can sometimes be very useful in the characterization and identification of anomaly [1].

To address the problem of reconstructing a small anomaly in visco-elastic media from wavefield measurements, it is important
to first model the mechanical response of such media to excitations.

The Voigt model is a common model to describe the visco-elastic properties of tissues. Catheline et al. [2] have shown that
this model is well adapted to describe the visco-elastic response of tissues to low-frequency excitations. However, we choose a
more general model derived by Szabo and Wu in [3] that describes observed power-law behavior of many visco-elastic materials
including human myocardium. This model is based on a time-domain statement of causality [4] and reduces to the Voigt model
for the specific case of quadratic frequency losses.

Expressing the ideal elastic field without any viscous effect in terms of the measured field in a viscous medium, one can generalize
the methods described in [5--9], namely the time reversal, back-propagation and Kirchhoff imaging, to recover the visco-elastic
and geometric properties of an anomaly from wavefield measurements. To achieve this goal, we focus on the Green function in
this article. We identify a relationship between the ideal Green function and the visco-elastic Green function in the limiting case
when the shear modulus �→∞, in a quasi-incompressible medium. We also provide an approximation of this relationship using
the stationary phase theorem.

The article is organized as follows. In Section 2, we introduce a general visco-elastic wave equation based on Szabo and Wu’s
power law model. Section 3 is devoted to the derivation of the Green function in the visco-elastic medium. In Section 4, we
approximate the ideal Green function in the case of quadratic losses and sketch a procedure of image reconstruction in visco-elastic
media. We support our work with numerical illustrations, which are presented in Section 5.
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2. General visco-elastic wave equation

When a wave travels through a biological medium, its amplitude decreases with time due to attenuation. The attenuation coefficient
for biological tissues may be approximated by a power-law over a wide range of frequencies. Measured attenuation coefficients of
soft tissues typically have linear or greater than linear dependence on frequency [3, 4, 10].

In a pure elastic medium; without attenuation, Hooke’s law states that:

T(x, t)=C :S(x, t),

where x ∈R3, t is the time variable, T is the order two stress tensor, C is the order four stiffness tensor and S= 1
2 (∇u+∇uT) is the

order 2 strain tensor. Here T represents the transpose operation, ‘ : ’ represents tensorial product and u(x, t) is the displacement field.
Consider a visco-elastic medium. Suppose that the medium is homogeneous and isotropic. We write

C = [Cijkl]= [��ij�kl +�(�ik�jl +�il�jk)],

Cv = [�ijkl]= [�s�ij�kl +�p(�ik�jl +�il�jk)],

where Cv is the order four viscosity tensor, �ab is the Kronecker delta function, (�,�) are the Lamé parameters, and (�s,�p) are the
shear and bulk viscosities, respectively. Throughout this work, we suppose that

�p,�s �1. (1)

For a medium obeying a power-law attenuation model, under the smallness condition (1), a generalized Hooke’s law reads [3]

T(x, t)=C :S(x, t)+Cv :M[S](x, t), (2)

where M is the convolution operator given by:

M[S]=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−(−1)�/2 ��−1
S

�t�−1 , � is an even integer,

2

�
(�−1)! (−1)(�+1)/2 H(t)

t�
∗t S, � is an odd integer,

− 2

�
�(�) sin(�� / 2)

H(t)

|t|� ∗t S, � is a non integer.

(3)

Here H(t) is the Heaviside function, � is the gamma function and ∗t represents the convolution with respect to t.

Remark 2.1
Note that for the common case when, �=2, the generalized Hooke’s law (2) reduces to the Voigt model,

T=C :S+Cv :
�S

�t
.

To find a general visco-elastic wave equation, we take the divergence of (2) which gives

∇ ·T= (�̄+ �̄)∇(∇ ·u)+ �̄�u, (4)

and substitute the resulting expression (4) in the equation of motion (5) for the system, i.e.

�
�2u

�t2
−F=∇ ·T. (5)

We obtain the generalized visco-elastic wave equation

�
�2u

�t2
−F= (�̄+ �̄)∇(∇ ·u)+ �̄�u, (6)

where � is the density (assumed to be constant here), F is the applied force and

�̄=�+�pM[·] and �̄=�+�sM[·].
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3. Green function

In this section we find the Green function for the visco-elastic wave equation (6). We first derive the following Helmholtz decom-
position of the displacement field:

Lemma 3.1
If the displacement field u(x, t) satisfy (6) such that (�u / �t)(x, 0)=∇A+∇×�B and u(x, 0)=∇C+∇× �D where ∇ ·�B=0=∇ · �D and if
the body force F=∇	f +∇× �
f with ∇ · �
f =0 then there exist potentials 	u and �
u such that

• u=∇	u +∇× �
u; ∇ · �
u =0;

• (�2 / �t2)	u = (1 / �)	f +c2
p�	u +�pM[�	u]≈ (1 / �)	f −(�p / �c2

p)M[	f ]+c2
p�	u +(�p / c2

p)M[�2
t 	u];

• (�2 / �t2)�
u = (1 / �)�
f +c2
s ��
u +�sM[��
u]≈ (1 / �)�
f −(�s / �c2

s )M[�
f ]+c2
s ��
u +(�s / c2

s )M[�2
t
�
u],

with

c2
p = �+2�

�
, c2

s = �

�
, �p = �p +2�s

�
and �s = �s

�
.

Proof
For 	u and �
u defined as:

	u(x, t) =
∫ t

0

∫ �

0

(
1

�
	f +(c2

p +�pM)[∇ ·u]

)
ds d�+tA+C, (7)

�
u(x, t) =
∫ t

0

∫ �

0

(
1

�
�
f −(c2

s +�sM)[∇×u]

)
ds d�+t�B+ �D. (8)

We have the required expression for u. Moreover, it is evident from (8) that ∇ ·
u =0
Now, on differentiating 	u and �
u twice with respect to time, we obtain

�2	u

�t2
= 1

�
	f +c2

p�	u +�pM[�	u],

�2 �
u

�t2
= 1

�
�
f +c2

s ��
u +�sM[��
u].

Finally we invoke (1). By applying M on last two equations, neglecting the higher order terms in �s and �p and injecting back the
expressions for M[�	u] and M[�
u], we get the required differential equations for 	u and 
u. �

Let

Km()=

√(
1− �m

c2
m
M̂[]

)
, m=s, p, (9)

where the multiplication operator M̂[] is the Fourier transform of the convolution operator M and  is the frequency. If 	u and 
u
are causal, then it implies the causality of the inverse Fourier transform of Km(), m=s, p. Applying the Kramers–Krönig relations‡ ,
it follows that

−
mKm()=H[�eKm()] and �eKm()=H[
mKm()], m=p, s, (10)

where H is the Hilbert transform, 
 and � represent the imaginary and the real parts of a complex number, respectively. Recall that
H2 =−I. The convolution operator M given by (3) is based on the constraint that causality imposes on (2). Under the smallness
assumption (1), the expressions in (3) can be found from the Kramers–Krönig relations (10). One drawback of (10) is that the
attenuation, 
mKm(), must be known at all frequencies to determine the dispersion, �eKm(). However, bounds on the dispersion
can be obtained from measurements of the attenuation over a finite frequency range [12].

3.1. Solution of (6) with a concentrated force

Let uij denote the ith component of the solution uj of the elastic wave equation (6) related to a force F concentrated in the
xj-direction. Let j=1 for simplicity and suppose that

F=−T(t)�(x−�)e1 =−T(t)�(x−�)(1, 0, 0), (11)

where � is the source point and (e1, e2, e3) is an orthonormal basis of R3.

‡See [4, 3, 11] for more details on causality and KKR.
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Let Z be the solution of the poisson equation

∇2Z=F.

Then

Z(x, t;�)= T(t)

4�

1

r
e1.

As ∇2Z=∇(∇ ·Z)−∇×(∇×Z), the Helmholtz decomposition of the force F can be written [13] as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F=∇	f +∇×
f ,

	f =∇ ·Z= T(t)

4�

�
�x1

(
1

r

)
,


f =−∇×Z=− T(t)

4�

(
0,

�
�x3

(
1

r

)
,− �

�x2

(
1

r

))
,

(12)

where r =|x−�|.
Consider the Helmholtz decomposition for u1 as

u1 =∇	1 +∇×
1 (13)

then, according to Lemma 3.1, 	1 and 
1 are, respectively, the solutions of the equations

�	1 − 1

c2
p

�2	1

�t2
+ �p

c4
p
M[�2

t 	1] = �p

�c4
p
M[	f ]− 1

c2
p�

	f , (14)

�
1 − 1

c2
s

�2
1

�t2
+ �s

c4
s
M[�2

t 
1] = �s

�c4
s
M[
f ]− 1

c2
s �


f . (15)

Taking the Fourier transform of (13), (14) and (15) with respect to t we get

û1 = ∇	̂1 +∇×
̂1, (16)

�	̂1 + 1

c2
p

K2
p ()	̂1 = �p

�c4
p
M̂[]	̂f − 1

�c2
p
	̂f , (17)

�
̂1 + 1

c2
s

K2
s ()
̂1 = �s

�c4
s
M̂[]
̂f − 1

�c2
s

̂f , (18)

where Km(), m=p, s, are defined in (9).
We remind that the Green function of the Helmholtz equations (17) and (18) is

ĝm(x,)= e
√−1 Km()

cm
|x|

4�|x| , m=s, p.

We closely follow the arguments in [13], and write 	̂1 as:

	̂1(x,;�) = ĝm(x,)∗x

(
�p

�c4
p
M̂[]	f − 1

c2
p�

	f

)

= −
(

1− �p

c2
p
M̂[]

)
T̂()

�(4�cp)2

∫
R3

ĝp(x−z,)
�

�z1

1

|z−�| dz.

Remark that z → ĝp(x−z,) is constant on each sphere �B(x, h), centered at x with radius h. Therefore, use of spherical coordinates
leads to

	̂1(x,;�)=−
(

1− �p

c2
p
M̂[]

)
1

�(4�cp)2
T̂()

∫ ∞

0
ĝp(h,)

∫
�B(x,h)

�
�z1

(
1

|z−�|
)

d�(z) dh

where d�(z) is the surface element on �B(x, h).
From [14], it follows that

∫
�B(x,h)

�
�z1

(
1

|z−�|
)

d�(z)=

⎧⎪⎨
⎪⎩

0 if h>r

4�h2 �
�x1

(
1

r

)
if h<r.
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Therefore, we have the following expression for 	̂1:

	̂1(x,;�) = −
(

1− �p

c2
p
M̂[]

)
1

4��c2
p

T̂()
�

�x1

(
1

r

)∫ r

0
he

√−1
Kp()

cp
h

dh,

= −
(

1− �p

c2
p
M̂[]

)
1

4��
T̂()

�
�x1

(
1

r

)∫ r/cp

0
�e

√−1Kp()� d�. (19)

In the same way, the vector 
̂1 is given by:


̂1(x,;�)=
(

1− �s

c2
s
M̂[]

)
1

4��
T̂()

(
0,

�
�x3

(
1

r

)
,− �

�x2

(
1

r

))∫ r/cs

0
�e

√−1Ks()� d�. (20)

Here we introduce the following notations for simplicity:

Im(r,) = Am

∫ r/cm

0
�e

√−1Km()� d� (21)

Em(r,) = Ame
√−1Km() r

cm , (22)

Am() =
(

1− �m

c2
m
M̂[]

)
, m=p, s. (23)

and calculate ûi1 = (∇	1)i +(∇× �
1)i . For all i=1 : 3

(∇	̂1
)

i = − �
�xi

[(
1− �p

c2
p
M̂[]

)
1

4��
T̂()

�
�x1

(
1

r

)∫ r/cp

0
�e

√−1Kp()� d�

]
,

= −
(

1− �p

c2
p
M̂[]

)
1

4��
T̂()

�2

�x1xi

(
1

r

)∫ r/cp

0
�e

√−1Kp()� d�−
(

1− �p

c2
p
M̂[]

)
1

4��
T̂()

�
�x1

(
1

r

)
�r

�xi

(
r

c2
p

e
√−1Kp() r

cp

)
,

= − 1

4��
T̂()

�2

�xi�x1

(
1

r

)
Ip(r,)+ 1

4��c2
pr

T̂()
�r

�x1

�r

�xi
Ep(r,),

where we have used the equality (� / �x1)(1 / r)=−(1 / r2)�r / �x1.
Similarly, the value (∇×
̂1)i is given by:

(
∇×
̂1

)
i
= 1

4��
T̂()

�2

�xi�x1

(
1

r

)
Is(r,)+ 1

4��c2
s r

T̂()

(
�i1 − �r

�xi

�r

�x1

)
Es(r,).

Therefore,

ûi1 = 1

4��
T̂()

�2

�xix1

(
1

r

)[
Is(r,)− Ip(r,)

]+ 1

4��c2
pr

T̂()
�r

�xi

�r

�x1
Ep(r,)+ 1

4��c2
s r

T̂()

(
�i1 − �r

�xi

�r

�x1

)
Es(r,).

Hence, ûij , the ith component of the solution ûj for an arbitrary j is

ûij =
1

4��
T̂()

(
3�i�j −�ij

) 1

r3

[
Is(r,)− Ip(r,)

]+ 1

4��c2
p

T̂()�i�j
1

r
Ep(r,)+ 1

4��c2
s

T̂()
(
�ij −�i�j

) 1

r
Es(r,),

where �i = (�r / �xi)= (xi −�i) / r and Im and Em are given by Equations (21) and (22).

3.2. Visco-elastic green function

If we substitute T(t)=�(t), where � is the Dirac delta function, then T̂()=1. Let Gij be the ith component of the Green function

related to the force concentrated in the xj-direction and Ĝij be the Fourier transform of Gij then we have the following expression

for Ĝij :

Ĝij(x,;�)= 1

4��

(
3�i�j −�ij

) 1

r3

[
Is(r,)− Ip(r,)

]+ 1

4��c2
p
�i�j

1

r
Ep(r,)+ 1

4��c2
s

(
�ij −�i�j

) 1

r
Es(r,),

or equivalently,

Ĝij(x,;�)= ĝp
ij (x,;�)+ ĝs

ij(x,;�)+ ĝps
ij (x,;�), (24)

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 819–830
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where

ĝps
ij (x,;�) = 1

4��
(3�i�j −�ij)

1

r3
[Is(r,)− Ip(r,)], (25)

ĝp
ij (x,;�) = 1

�c2
p

Ap()�i�j ĝ
p(r,), (26)

and

ĝs
ij(x,;�)= 1

�c2
s

As()(�ij −�i�j)ĝs(r,). (27)

Let G(x, t;�)= (Gij(x, t;�))3
i,j=1 denote the transient Green function of (6) associated with the source point �. Let Gm(r, t) and Wm(x, t)

be the inverse Fourier transforms of Am()ĝm(r,) and Im(r,), m=p, s, respectively. Then, from (24)–(27), we have

Gij(x, t;�)= 1

�c2
p
�i�jG

p(r, t)+ 1

�c2
s

(�ij −�i�j)Gs(r, t)+ 1

4��
(3�i�j −�ij)

1

r3
[Ws(r, t)−Wp(r, t)]. (28)

Remark that by a change of variables,

Wm(r, t)= 4�

c2
m

∫ r

0
�2Gm(�, t;�) d�.

4. Approximate green function for voigt model

Consider the limiting case �→+∞. The Green function for a quasi-incompressible visco-elastic medium is given by:

Gij(x, t;�)= 1

�c2
s

(�ij −�i�j)Gs(r, t)+ 1

�c2
s

(3�i�j −�ij)
1

r3

∫ r

0
�2Gs(�, t) d�.

To generalize the detection algorithms presented in [5--8] to the visco-elastic case we shall express the ideal Green function without
any viscous effect in terms of the Green function in a viscous medium. From

Gs(r, t)= 1√
2�

∫
R

e−√−1tAs()ĝs(r,) d,

it follows that

Gs(r, t)= 1√
2�

∫
R

As()
e
√−1

(
−t+ Ks()

cs
r
)

4�r
d.

Let us introduce the operator

L[�(t)]= 1

2�

∫
R

∫ +∞

0
As()�(�)e

√−1Ks()�e−√−1t d�d,

for a causal function �. Then we have

Gs(r, t;�)=L

[
�(�−r / cs)

4�r

]
,

and therefore,

L∗[Gs](r, t)=L∗L

[
�(�−r / cs)

4�r

]
,

where L∗ is the L2(0,+∞)-adjoint of L.
Consider for simplicity the Voigt model. Then, M̂()=−√−1 and hence,

Ks()=

√
1+

√−1�s

c2
s

≈+
√−1�s

2c2
s

2,

under the smallness condition (1). The operator L can then be approximated by

L̃[�](t)= 1

2�

∫
R

∫ +∞

0
As()�(�)e

− �s
2c2

s
2�

e
√−1(�−t) d�d.

8
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Since ∫
R

e
− �s

2c2
s

2�
e
√−1(�−t) d=

√
2�cs√
�s�

e− c2
s (�−t)2

2�s� ,

and

√−1

∫
R

e
− �s

2c2
s

2�
e
√−1(�−t) d=−

√
2�cs√
�s�

�
�t

e− c2
s (�−t)2

2�s� ,

it follows that

L̃[�](t)=
∫ +∞

0

t

�
�(�)

cs√
2��s�

e− c2
s (�−t)2

2�s� d�. (29)

Analogously,

L̃∗[�](t)=
∫ +∞

0

�

t
�(�)

cs√
2��st

e− c2
s (�−t)2

2�st d�. (30)

Since the phase in (30) is quadratic and �s is small then by consequence of the stationary phase Theorem A1, we have following
result:

Theorem 4.1 (Approximation of operator L)

L̃∗[�]=�+ �s

2c2
s
�tt(t�)+o

(
�s

c2
s

)
, L̃[�]=�+ �s

2c2
s

t�tt�+o

(
�s

c2
s

)
, (31)

and therefore

L̃∗L̃[�]=�+ �s

c2
s
�t(t�t�)+o

(
�s

c2
s

)
, (32)

and,

(L∗L̃)−1[�]=�− �s

c2
s
�t(t�t�)+o

(
�s

c2
s

)
. (33)

Proof

1. Proof of approximation (31):
Let us first consider the case of operator L∗. We have

L̃∗[�](t)=
∫ +∞

0

�

t
�(�)

cs√
2��st

e− c2
s (�−t)2

2�st d�= 1

t
√

�

(∫ +∞

0

(�)eif (�)/�

)
,

with, f (�)= i�(�−t)2, �=2��st / c2
s and 
(�)=��(�). Remark that the phase f satisfies at �= t , f (t)=0, f ′(t)=0, f ′′(t)=2i� �=0.

Moreover, we have ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eif (t)/�(�−1f ′′(t) / 2i�)−1/2 =√
�

gt(�)= f (�)−f (t)− 1

2
f ′′(t)(�−t)2 =0

L1[
](t)=L(1)
1 [
](t)= −1

2i
f ′′(t)−1


′′
(t)= 1

4�
(t�)′′.

Thus, Theorem A1 implies that ∣∣∣∣L̃∗[�](t)−
(

�(t)+ �s

2c2
s

(t�)′′
)∣∣∣∣� C

t
�3/2 ∑

��4
sup |(t�)(�)|.

The case of the operator L̃ is very similar. Note that

L̃[�](t)=
∫ +∞

0

t

�
�(�)

cs√
2��s�

e− c2
s (�−t)2

2�s� d�= t√
�

(∫ +∞

0

(�)eif (�)/�

)
,
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with f (�)= i�(�−t)2 / �, �=�s / 2�c2
s and 
(�)=�(�)�−3/2. It follows that

f ′(�)= i�

(
1− t2

�2

)
, f ′′(�)=2i�

t2

�3
, f ′′(t)=2i�

1

t
,

and the function gt(�) is equal to

gt(�)= i�
(�−t)2

�
− i�

(�−t)2

t
= i�

(t−�)3

�t
.

We deduce that ⎧⎪⎪⎨
⎪⎪⎩

(gt
)(4)(t) = (g(4)
t (t)
(t)+4g(3)

t (t)
′(t))= i�

(
24

t3

(t)− 24

t2

′(t)

)

(g2
t 
)(6)(t) = (g2

t )(6)(t)
(t)=−�2 6!

t4 
(t),

and then, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(1)
1 [
](t) = −1

i

(
1

2
(f ′′(t))−1
′′(t)

)
= 1

4�
t

(
�̃√

t

)′′
= 1

4�

(√
t�̃

′′
(t)− �̃

′
(t)√
t

+ 3

4

�̃

t3/2

)

L(2)
1 [
](t) = 1

8i
f ′′(t)−2(g(4)

t (s)
(s)+4g(3)
t (t)
′(t))= 1

4�

(
3

(
�̃(t)√

t

)′
−3

�̃(t)

t3/2

)

= 1

4�

(
3
�̃

′
(t)√
t

− 9

2

�̃(t)

t3/2

)

L(3)
1 [
](t) = −1

232! 3! i
f ′′(t)−3(g2

t )(6)(t)
(s)= 1

4�

(
15

4

�̃(t)

t3/2

)
,

where �̃(�)=�(�) / �. Therefore, we have

L1[
](t) = L(1)
1 [
](t)+L(2)

1 [
](t)+L(3)
1 [
](t)

= 1

4�

(√
t�̃

′′
(t)+(3−1)

�̃
′
(t)√
t

+
(

3

4
− 9

2
+ 15

4

)
�̃(t)

t3/2

)
= 1

4�
√

t
(t�̃(t))′′ = 1

4�
√

t
�′′(t),

and again Theorem A1 shows that ∣∣∣∣L̃[�](t)−
(

�(t)+ �s

2c2
s

t�′′(t)

)∣∣∣∣�Ct�3/2 ∑
��4

sup |
(�)(t)|.

2. Proof of approximation (32):
Approximation (32) is evident and directly comes from (31).

3. Proof of approximation (33):
Note that 
= (L∗L̃)−1[�] implies (L∗L̃)[
]=�. As (�s / c2

s )�1, we introduce the following asymptotic development of 
:


=
∞∑

i=0

(
�s

c2
s

)i

i .

From (32), it holds


0 +
(

�s

c2
s

)
((t
′

0)′+
1)+o

(
�s

c2
s

)
=�,

and


0 =� and 
1 =−�t(t�t
0)=−�t(t�t�),

and finally

(L∗L̃)−1[�]=�− �s

c2
s
�t(t�t�)+o

(
�s

c2
s

)
.
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Remark 4.2 (Approximation of L for fractional models)
For more general media with fractional power-law exponents �, one can recover the ideal Green function from the viscous one in a
very similar fashion by inverting a fractional differential operator. Such an approximation has been reported in [15], in the context
of Photoacoustic imaging in dissipative media. See [15, Section 1.2.6] for a brief account of the approximation for fractional model.

Remark 4.3 (Imaging procedure)
From Theorem 4.1, it follows that the ideal Green function, �(�−r / cs) / (4�r), can be approximately reconstructed from the viscous
Green function, Gs(r, t;�), by either solving the ordinary differential equation

�+ �s

c2
s
�t(t�t�)=L∗[Gs](r, t;�),

with �=0, t �0 or just making the approximation

1

(4�r)
�(�−r / cs)≈L∗[Gs](r, t;�)− �s

c2
s
�t(t�t[L∗Gs](r, t;�)).

Once the ideal Green function �(�−r / cs) / (4�r) is reconstructed, one can find its source � using a time-reversal, a Kirchhoff or a
back propagation algorithm. See [5--8].

Using the asymptotic formalism developed in [8, 16, 17], one can also find the shear modulus of the anomaly using the ideal
near-field measurements which can be reconstructed from the near-field measurements in the viscous medium. The asymptotic
formalism reduces the anomaly imaging problem to the detection of the location and the reconstruction of a certain polarization
tensor in the far-field and separates the scales in the near-field. �

5. Numerical illustrations

5.1. Profile of the green function

In this section, we illustrate the profile of the Green function for different values of the power law exponent �, shear viscosity �s
and t. We choose parameters of simulation as in the work of Bercoff et al. [1]: we take �=1, 000, cs =1, cp =40, �p =0.

In Figure 2, we plot the first component, G11, of the Green function observed at the point A= ((1 /
√

2)r, (1 /
√

2)r, 0) (see first image
in Figure 1) with r =0.015 for three different values of � and two different values of �s. We can clearly distinguish the three different

3x

2x

1xF
r A

2x

3x

1xF

P r/2

Figure 1. Left: A=
(

1√
2

r, 1√
2

r, 0
)

. Right: Plane P={x ∈R3
, x3 = r

2 }.
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Figure 2. Temporal response t →G11(A, t, 0) to a spatiotemporal delta function using a purely elastic Green function and a viscous Green function (blue
line): First line : �s =0.02, Second line : �s =0.2; (left to right) �=1.75, �=2, �=2.25.
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Figure 3. 2D spatial response x →G11(x, t, 0) on the plan P to a spatiotemporal delta function with (top to bottom): a purely elastic Green function, a viscous
Green function with (�=1.75,�s =0.2) and (�=2,�s =0.2). Left to right: t =0.0075, t =0.0112 and t =0.015.
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Figure 4. Comparison between u1,�s (x, t) and L[u1,ideal](x, t) observed at x =A with �=2 and �s =0.02 ; Left; 0 =0 ; Center, 0 =�; Right, 0 =2�.

terms of the Green function; i.e. Gs
ij , Gp

ij and Gps
ij and that the attenuation behavior varies with respect to different choices of power

law exponent � and the viscosity �s.
In Figure 3, we plot G11, evaluated on the plane P={x ∈R3; x3 = r / 2} (see second image in Figure 1), at three different times.

As expected, we get a diffusion of the wavefront with the increasing values of the power law exponent � and depending on the
choice of �s.

5.2. Approximation of attenuation operator L

Consider the limiting case when �→+∞ with �=2. We take �=1, 000, cs =1 and a concentrated force F. of the form F=−T(t)�(x)e1
where the time profile of the pulse, T(t), is a Gaussian with central frequency 0 and bandwidth �. Denote by �uideal(x, t) the ideal
response without attenuation and by �u�s (x, t), the response associate to the attenuation coefficient �s. Following Section 4, we have

�u�s ≈L[�uideal].

In Figure 4, we plot the first components of t →�uideal(A, t), t →�u�s (A, t) and t →L[�uideal](A, t) for different values of 0 and �s =0.02.
As expected, the function t →�u�s (A, t) and t →L[�uideal](A, t) are very similar. It justifies that the attenuation operator, L, well describes
the viscosity effects and the approximations presented in Section 4 are quite adequate.
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log(vs / cs
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Figure 5. Approximation of operator L : Error �s

c2
s
→
∥∥∥L[�]−

(
�+ �s

2c2
s

t�′′)∥∥∥∞
in logarithmic scale in the case when �(t)=u1,ideal(A, t) with 0 =�.

Finally, in Figure 5, we plot in logarithmic scale the error of approximation

�s

c2
s

→
∥∥∥∥L[�]−

(
�+ �s

2c2
s

t�′′
)∥∥∥∥

∞
,

where �(t) is the first component of �uideal(x, t), computed at the point x =A with 0 =�. It clearly appears to be an approximation
of order 2.

6. Conclusion

In this paper, we have computed the Green function in a visco-elastic medium obeying a frequency power-law. For the Voigt
model, which corresponds to a quadratic frequency loss, we have used the stationary phase Theorem A1 to reconstruct the ideal
Green function from the viscous one by solving an ordinary differential equation. Once the ideal Green function is reconstructed,
one can find its source point � using the algorithms in [5--8] such as time reversal, back-propagation, and Kirchhoff imaging. For
more general power-law media, one can recover the ideal Green function from the viscous one by inverting a fractional differential
operator [15].

A number of recent experimental studies indicate that certain tissues like muscles and glands exhibit anisotropic visco-elastic
behavior (see e.g. [18--20]). Therefore, it would be very interesting to approximate the ideal Green function from the viscous one
in an anisotropic medium and would be the subject of future investigations.

Appendix A: Stationary phase method

The proof of the following theorem is established in [21, Theorem 7.7.1].

Theorem A1 (Stationary Phase)
Let K ⊂ [0,∞) be a compact set, X an open neighborhood of K and k a positive integer. If 
∈C2k

0 (K), f ∈C3k+1(X) and Im(f )�0 in X ,
Im(f (t0))=0, f ′(t0)=0, f ′′(t0) �=0, f ′ �=0 in K \{t0} then for �>0∣∣∣∣∣

∫
K

(t)eif (t)/� dt−eif (t0)/� (�f ′′(t0) / 2�i

)−1/2 ∑
j<k

�jLj[
]

∣∣∣∣∣�C�k ∑
��2k

sup |
(�)(x)|.

Here C is bounded when f stays in a bounded set in C3k+1(X) and |t−t0| / |f ′(t)| has a uniform bound. With,

gt0 (t)= f (t)−f (t0)− 1
2 f ′′(t0)(t−t0)2,

which vanishes up to third order at t0, we have

Lj[
]= ∑
�−�=j

∑
2��3�

i−j 2−�

�!�!
(−1)�f ′′(t0)−�(g�

t0

)(2�)(t0).
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Note that L1 can be expressed as the sum L1[
]=L(1)
1 [
]+L(2)

1 [
]+L(3)
1 [
], where L

j
1, for j=1, 2, 3 are, respectively, associate to the

pair (�j ,�j)= (1, 0), (2, 1), (3, 2) and are identified as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L(1)
1 [
] = −1

2i
f ′′(t0)−1
(2)(t0),

L(2)
1 [
] = 1

222! i
f ′′(t0)−2(gt0 u)(4)(t0)= 1

8i
f ′′(t0)−2(g(4)

t0
(t0)
(t0)+4g(3)

t0
(t0)
′(t0)),

L(3)
1 [
] = −1

232! 3! i
f ′′(t0)−3(g2

t0

)(6)(t0)= −1

232! 3! i
f ′′(t0)−3(g2

t0
)(6)(t0)
(t0).

Acknowledgements

The authors thank Prof. Habib Ammari (École Normale Supérieure-Paris), who called their attention to this problem and for his
valuable comments and fruitful discussions. This work was partially supported by the foundation Digiteo-France and the Higher
Education Commission of Pakistan.

References
1. Bercoff J, Tanter M, Muller M, Fink M. The role of viscosity in the impulse differection field of elastic waves induced by the acoustic radiation

force. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 2004; 51(11):1523--1535.
2. Catheline S, Gennisson JL, Delon G, Sinkus R, Fink M, Abdouelkaram S, Culioli J. Measurement of visco-elastic properties of solid using transient

elastography: an inverse problem approach. Journal of Acoustical Society of America 2004; 116:3734--3741.
3. Szabo TL, Wu J. A model for longitudinal and shear wave propagation in viscoelastic media. Journal of Acoustical Society of America 2000;

107(5):2437--2446.
4. Szabo TL. Causal theories and data for acoustic attenuation obeying a frequency power law. Journal of Acoustical Society of America 1995;

97(1):14--24.
5. Ammari H. An Introduction to Mathematics of Emerging Biomedical Imaging. Mathematics and Applications, vol. 62. Springer: Berlin, 2008.
6. Ammari H (ed.). Mathematical Modeling in Biomedical Imaging I. Lecture Notes in Mathematics: Mathematical Biosciences Subseries, vol. 1983.

Springer: Berlin, 2009.
7. Ammari H, Garapon P, Guadarrama-Bustos L, Kang H. Transient anomaly imaging by the acoustic radiation force. Journal of Differential Equations

2010; 249:1579--1595.
8. Ammari H, Guadarrama-Bustos L, Kang H, Lee H. Transient elasticity imaging and time reversal, submitted.
9. Ammari H, Kang H. Expansion Methods, Handbook of Mathematical Methods in Imaging. Springer: New York, 2011.

10. Duck FA. Physical Properties of Tissue. A Comprehensive Reference Book. Academic Press: London, 1990.
11. Titchmarsh EC. Introduction to the Theory of Fourier Integrals (2nd edn). Clarendon Press: Oxford, 1948.
12. Milton GW, Eyre DJ, Mantese VJ. Finite frequency range Kramers–Krönig relations: bounds on the dispersion. Physical Review Letters 1997;

79:3062--3075.
13. Pujol J. Elastic Wave Propagation and Generation in Seismology. Cambridge University Press: U.K., 2003.
14. Aki K, Richards PG. Quantitative Seismology (2nd edn). University Science Books: U.S.A., 2002.
15. Ammari H, Bretin E, Jugnon V, Wahab A. Photoacoustic Imaging for Attenuating Acoustic Media. Mathematical Modeling in Biomedical Imaging II.

Lecture Notes in Mathematics: Mathematical Biosciences Subseries. Springer: Berlin, 2011, to appear.
16. Ammari H, Kang H. Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics, vol. 1846. Springer:

Berlin, 2004.
17. Ammari H, Kang H. Polarization and Moment Tensors: with Applications to Inverse Problems and Effective Medium Theory. Applied Mathematical

Sciences Series, vol. 162. Springer: New York, 2007.
18. Gennisson JL, Catheline S, Chaffai S, Fink M. Transient elastography in anisotropic medium: application to the measurement of slow and fast

shear wave speeds in muscles. Journal of the Acoustical Society of America 2003; 114(1):536--541.
19. Liu Y, Sun Z, Wang G. Tomography-based 3-D anisotropic elastography using boundary measurements. IEEE Transactions on Medical Imaging

2005; 24(10):1323--1333.
20. Sinkus R, Tanter M, Catheline S, Lorenzen J, Kuhl C, Sondermann E, Fink M. Imaging anisotropic and viscous properties of breast tissue by

magnetic resonance-elastography. Magnetic Resonance in Medicine 2005; 53:372--387.
21. Hormander L. The Analysis of the Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Classics in Mathematics. Springer:

Berlin, 2003.

8
3

0

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 819–830


