School of Natural Sciences

Department of Mathematics

AQ. Find the characteristic values and associated non-trivial solutions (if any) of the equation

$$
\begin{equation*}
h(x)=\lambda \int_{0}^{2 \pi} \sin x \cos y h(y) d y \tag{1}
\end{equation*}
$$

Sol. The solution to (1) is given by $h(x)=C \lambda \sin x$ with $C:=\int_{0}^{2 \pi} \cos y h(y) d y$. In order to find C, multiply Eq. (1) with $\cos x$ and integrate over [0, 2π], i.e.,

$$
C=\int_{0}^{2 \pi} \cos y h(y) d y=\lambda \int_{0}^{2 \pi} \sin x \cos x d x \int_{0}^{2 \pi} \cos y h(y) d y=C \lambda \int_{0}^{2 \pi} \sin x \cos x d x
$$

On simplification, we arrive at

$$
\begin{equation*}
C\left[1-\lambda \int_{0}^{2 \pi} \sin x \cos x d x\right]=0 \tag{a}
\end{equation*}
$$

The non-trivial solutions to Eq. (1) exist only if

$$
\begin{equation*}
1-\lambda \int_{0}^{2 \pi} \sin x \cos x d x=0 \tag{b}
\end{equation*}
$$

However, this is absurd because

$$
\int_{0}^{2 \pi} \sin x \cos x d x=\frac{1}{2} \int_{0}^{2 \pi} \sin 2 x d x=-\frac{1}{4}\left[\left.\cos 2 x\right|_{0} ^{2 \pi}=0\right.
$$

This will lead to $1=0$ in Eq. (b), which is absurd. Therefore, the only solution to (a) is $C=0$. Thus, there is only a trivial solution to (1) and there are no characteristic values.

RQ Consider the integral equations

$$
\begin{equation*}
t=\int_{0}^{t}\left(e^{t}+e^{x}\right) \varphi(x) d x \tag{2}
\end{equation*}
$$

(a) Tick the appropriate option in each case (only one). Integral equation (2) is:

1. Volterra \checkmark
2. Linear \checkmark
3. Homogeneous
4. Singular

Fredholm
Non-Linear
Non-Homogeneous \checkmark
Non-Singular \checkmark
(b) Transform the first kind integral equation (2) to a second kind integral equation.

Sol. Differentiating Eq. (2) with respect to t, we get

$$
1=\frac{d t}{d t}\left(e^{t}+e^{t}\right) \varphi(t)-0+\int_{0}^{t} \frac{\partial}{\partial t}\left(e^{t}+e^{x}\right) \varphi(x) d x=2 e^{t} \varphi(t)+\int_{0}^{t} e^{t} \varphi(x) d x
$$

On rearranging, we get

$$
2 e^{t} \varphi(t)=1-\int_{0}^{t} e^{t} \varphi(x) d x
$$

or equivalently,

$$
\varphi(t)=\frac{1}{2} e^{-t}-\frac{1}{2} \int_{0}^{t} \varphi(x) d x .
$$

"If you believe it will work out, you'll see opportunities. If you believe it won't, you will see obstacles." - Wayne Dyer.

