School of Natural Sciences

Department of Mathematics

NUST
Defining futures

Quiz 2 (Integral Equations), Spring 2020

Date: March 05, 2020

AQ. Find the solution y to the boundary value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}=x^{2}, \\
y(0)=0=y(1),
\end{array}\right.
$$

using the associated Green's function

$$
G(x, s)= \begin{cases}s(x-1), & 0 \leq s \leq x \\ x(s-1), & x \leq s \leq 1\end{cases}
$$

Sol. Note that $f(x)=x^{2}$ here and the Green's function satisfies the boundary conditions $G(0, s)=0=G(1, x)$. The solution of the given boundary value problem is

$$
\begin{aligned}
y(x) & =\int_{0}^{1} G(x, s) f(s) d s \\
& =\int_{0}^{1} G(x, s) s^{2} d s \\
& =\int_{0}^{x} s(x-1) s^{2} d s+\int_{x}^{1} x(s-1) s^{2} d s \\
& =(x-1) \int_{0}^{x} s^{3} d s+x \int_{x}^{1}\left(s^{3}-s^{2}\right) d s \\
& =(x-1)\left[\frac{s^{4}}{4}\right]_{0}^{x}+x\left[\frac{s^{4}}{4}-\frac{s^{3}}{3}\right]_{x}^{1} \\
& =(x-1) \frac{x^{4}}{4}+x\left(\frac{1}{4}-\frac{1}{3}\right)-x\left(\frac{x^{4}}{4}-\frac{x^{3}}{3}\right) \\
& =\frac{1}{12}\left(x^{4}-x\right) .
\end{aligned}
$$

RQ. Solve the Volterra equation

$$
\begin{equation*}
u(x)=1+\int_{0}^{x}(x-t) u(t) d t \tag{a}
\end{equation*}
$$

by finding the solution of the equivalent ODE.
Sol. Differentiating (a) w.r.t. x, we get

$$
u^{\prime}(x)=\int_{0}^{x} u(t) d t .
$$

Differentiating once again we get

$$
u^{\prime \prime}(x)=u(x) .
$$

Moreover, $u(0)=1$ and $u^{\prime}(0)=0$. Thus, we get boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)-u(x)=0 \tag{1}\\
u(0)=1, \quad u^{\prime}(0)=0 .
\end{array}\right.
$$

The characteristic equation of the homogeneous ODE is $m^{2}-1=0$. Thus, $m= \pm 1$ and the general solution is $u(x)=c_{1} e^{x}+c_{2} e^{-x}$. Invoking the conditions $u(0)=1$ and $u^{\prime}(0)=0$ we get, respectively,

$$
1=c_{1}+c_{2} \quad \text { and } \quad 0=c_{1}-c_{2} .
$$

Thus, $c_{1}=c_{2}=1 / 2$. Therefore, $u(x)=\frac{e^{x}+e^{-x}}{2}=\cosh x$.

