National University of Technology, Islamabad
Quiz I-Key(Linear Algebra \& ODE), Fall 2019
BET (Mechanical), Date: September 26, 2019

Q Balancing a chemical equation $w C_{3} H_{8}+x O_{2} \rightarrow y C_{2}+z \mathrm{H}_{2} \mathrm{O}$ means finding integers w, x, y, z such that the numbers of atoms of carbon (C), hydrogen (H) and oxygen (O) are the same on both sides of this reaction, in which propane $C_{3} H_{8}$ and O_{2} give carbon dioxide and water. Find the smallest positive integers w, x, y and z using Echelon or Reduced Echelon Form. (Hint: Compare the atoms of C, H and O on both sides).

Sol. On comparing the atoms of Carbon (C), Hydrogen (H), and Oxygen (O) on both sides of the reaction equation, we get the following set of equations

$$
3 w=y ; \quad 8 w=2 z ; \quad 2 x=2 y+z
$$

or equivalently the system of equations

$$
\begin{array}{r}
3 w-y=0, \\
8 w-2 z=0, \\
2 x-2 y-z=0 . \tag{3}
\end{array}
$$

In matrix form, we have

$$
\left(\begin{array}{cccc}
3 & 0 & -1 & 0 \tag{4}\\
8 & 0 & 0 & -2 \\
0 & 2 & -2 & -1
\end{array}\right)\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

We consider the augmented matrix $[A \mid b]$ and reduce it to an echelon or reduced echelon form as follows.

$$
\begin{aligned}
{[A \mid b] } & =\left(\begin{array}{ccccc}
3 & 0 & -1 & 0 & 0 \\
8 & 0 & 0 & -2 & 0 \\
0 & 2 & -2 & -1 & 0
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 0 & -1 / 3 & 0 & 0 \\
1 & 0 & 0 & -1 / 4 & 0 \\
0 & 1 & -1 & -1 / 2 & 0
\end{array}\right) \quad\left(\text { R.O. }: 1 / 3 R_{1} ; 1 / 8 R_{2} ; 1 / 2 R_{3}\right) \\
& \sim\left(\begin{array}{ccccc}
1 & 0 & -1 / 3 & 0 & 0 \\
0 & 0 & 1 / 3 & -1 / 4 & 0 \\
0 & 1 & -1 & -1 / 2 & 0
\end{array}\right) \quad\left(\text { R.O. }: R_{2}-R 1\right) \\
& \sim\left(\begin{array}{ccccc}
1 & 0 & -1 / 3 & 0 & 0 \\
0 & 1 & -1 & -1 / 2 & 0 \\
0 & 0 & 1 / 3 & -1 / 4 & 0
\end{array}\right) \quad\left(\text { R.O. }: R_{23}\right) \\
& \sim\left(\begin{array}{ccccc}
1 & 0 & -1 / 3 & 0 & 0 \\
0 & 1 & -1 & -1 / 2 & 0 \\
0 & 0 & 1 & -3 / 4 & 0
\end{array}\right) \quad\left(\text { R.O. }: 3 R_{3}\right)
\end{aligned}
$$

This gives the echelon form of the augmented matrix. In order to find the reduced echelon matrix, we proceed as follows:

$$
\begin{aligned}
{[A \mid b] } & \sim\left(\begin{array}{ccccc}
1 & 0 & -1 / 3 & 0 & 0 \\
0 & 1 & -1 & -1 / 2 & 0 \\
0 & 0 & 1 & -3 / 4 & 0
\end{array}\right) \\
& \left.\sim\left(\begin{array}{ccccc}
1 & 0 & -1 / 3 & 0 & 0 \\
0 & 1 & 0 & -5 / 4 & 0 \\
0 & 0 & 1 & -3 / 4 & 0
\end{array}\right) \quad \text { (R.O. }: R_{2}+R_{3}\right) \\
& \left.\sim\left(\begin{array}{lllll}
1 & 0 & 0 & -1 / 4 & 0 \\
0 & 1 & 0 & -5 / 4 & 0 \\
0 & 0 & 1 & -3 / 4 & 0
\end{array}\right) \quad \text { (R.O.: } R_{1}+1 / 3 R 3\right)
\end{aligned}
$$

Therefore, the reduced equations are

$$
\begin{equation*}
w-(1 / 4) z=0 ; \quad x-(5 / 4) z=0 ; \quad y-(3 / 4) z=0, \quad z=\text { free variable. } \tag{5}
\end{equation*}
$$

We choose $z=4 r$, for $r \in \mathbb{R}$ to get

$$
\begin{equation*}
w=r, \quad x=5 r, \quad y=3 r, \quad z=4 r . \tag{6}
\end{equation*}
$$

Note that the smallest positive integer solution $(w, x, y, z)^{T}$ is possible when $r=1$. Thus, the balanced chemical equation is $\mathrm{C}_{3} \mathrm{H8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$.

