Q. 1 Let transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be given by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right):=T\left(\begin{array}{l}
x \\
0 \\
y \\
0
\end{array}\right)
$$

Find $\operatorname{ker}(T)$ and $\operatorname{dim}(\operatorname{ker}(T))$. Without calculating rang (T), precise the dim $(\operatorname{rang}(T))$.
Ans. It is evident that T is a linear transformation with matrix $A:=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. Therefore, for all $\mathbf{x} \in \mathbb{R}^{3}$, we have $T(\mathbf{x})=A \mathbf{x}$. Thus, the $\operatorname{ker}(T)=\operatorname{null}(A)$ is the set of all solutions to the homogeneous linear system $A \mathbf{x}=\mathbf{0}$. Note that

$$
A \sim\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(R_{23}\right)
$$

Therefore, $x=0, y=0$, and $z=$ free variable, or equivalently,

$$
\operatorname{ker}(T)=\operatorname{null}(A)=\left\{\left.\left(\begin{array}{l}
0 \\
0 \\
z
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, z \in \mathbb{R}\right\} .
$$

It is evident that

$$
\operatorname{ker}(T)=\left\{\left.z\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, z \in \mathbb{R}\right\}=\operatorname{span}\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}=\operatorname{span}\left\{\mathbf{e}_{1}\right\} .
$$

As $\left\{\mathbf{e}_{1}\right\}$ spans $\operatorname{ker}(T)$ and that $\left\{\mathbf{e}_{1}\right\}$ is linearly independent, it forms a basis of $\operatorname{ker}(T)$. Since there is only 1 element in the basis of $\operatorname{ker}(T)$, we have $\operatorname{dim}(\operatorname{ker}(T))=1$.
From Rank-Nullity Theorem, we have $\operatorname{dim}(\operatorname{rang}(T))=3-\operatorname{dim}(\operatorname{ker}(T))=2$.

[^0]
[^0]: "What seems to us as bitter trials are often blessings in disguise." ~Oscar Wilde

