National University of Technology, Islamabad
Quiz IV (Calculus II), Spring 2019

Solution Key

Q. 1 Find three positive numbers whose sum is 48 and such that their product is as large as possible.

Sol. Let x, y, and z be the required numbers. We maximize $P=x y z$ subject to $x+y+z=48$, $x>0, y>0$, and $z>0$. Eliminating z by substituting $z=48-x-y$ we get

$$
P(x, y)=x y(48-x-y)=48 x y-x^{2} y-x y^{2}
$$

For second derivative test, we derive
$P_{x}=48 y-2 x y-y^{2}, \quad P_{y}=48 x-x^{2}-2 x y, \quad P_{x x}=-2 y, \quad P_{y y}=-2 x, \quad P_{x y}=48-2 x-2 y$.
For critical points, set $P_{x}=0=P_{y}$ to get $y(48-2 x-y)=0$ and $x(48-x-2 y)=0$. Since $x>0$ and $y>0$, we have

$$
2 x+y=48 \quad \text { and } \quad x+2 y=48
$$

Solving these equations, we get the critical values $(x, y)=(16,16)$. Since

$$
\left.H\right|_{(16,16)}=\left.\left[P_{x x} P_{y y}-P_{x y}^{2}\right]\right|_{(16,16)}=\left.\left[4 x y-(48-2 x-2 y)^{2}\right]\right|_{(16,16)}=3(16)^{2}=768>0
$$

and

$$
P_{x x}(16,16)=-2(16)=-32<0
$$

we have relative maximum at $x=16, y=16$, and $z=48-x-y=16$. Therefore, for the numbers $x=y=z=16$, the product is maximum while the sum is 48 .

[^0]
[^0]: "Successful people do what unsuccessful people are not willing to do. Don't wish it were easier, wish you were better" ~ Jim Rohn

