National University of Technology, Islamabad

Quiz IV (Calculus II), Spring 2019

Solution Key

Q. 1 Find a vector in 3-dimensional space whose length is 5 and whose components have the largest possible sum.

Sol. Let $\mathbf{v}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ be the required vector such that $|\mathbf{v}|=5$, i.e., $x^{2}+y^{2}+z^{2}=25$ and $f(x, y, z)=x+y+z$ is largest (f is the objective function here). The problem at hand is as follows. Maximize the function $f(x, y, z)=x+y+z$ subject to the constrain $g(x, y, z)=x^{2}+y^{2}+z^{2}-25$. Using the method of Lagrange multipliers, we set $\nabla f=\lambda \nabla g$, i.e.,

$$
\mathbf{i}+\mathbf{j}+\mathbf{k}=\lambda(2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}) \Longleftrightarrow 1=2 x \lambda, \quad 1=2 y \lambda, \quad 1=2 z \lambda .
$$

This implies

$$
\lambda=\frac{1}{2 x}=\frac{1}{2 y}=\frac{1}{2 z} \Longleftrightarrow y=x \quad \text { and } \quad z=x .
$$

With this information at hand, we have from the constraint equation

$$
25=x^{2}+y^{2}+z^{2}=x^{2}+x^{2}+x^{2}=3 x^{2} \Longleftrightarrow x= \pm \sqrt{25 / 3}= \pm 5 / \sqrt{3}=y=z .
$$

Since

$$
f\left(\frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}}\right)=\frac{5}{\sqrt{3}} \quad \text { and } \quad f\left(-\frac{5}{\sqrt{3}},-\frac{5}{\sqrt{3}},-\frac{5}{\sqrt{3}}\right)=-\frac{5}{\sqrt{3}},
$$

therefore, the required vector is $\mathbf{v}=\frac{5}{\sqrt{3}}(\mathbf{i}+\mathbf{j}+\mathbf{k})$.

