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Abstract: Surface-Enhanced Raman Spectroscopy (SERS)-based biomolecule detection has been
a challenge due to large variations in signal intensity, spectral profile, and nonlinearity. Recent
advances in machine learning offer great opportunities to address these issues. However, well-
documented procedures for model development and evaluation, as well as benchmark datasets,
are lacking. Towards this end, we provide the SERS spectral benchmark dataset of Rhodamine 6G
(R6G) for a molecule detection task and evaluate the classification performance of several machine
learning models. We also perform a comparative study to find the best combination between the
preprocessing methods and the machine learning models. Our best model, coined as the SERSNet,
robustly identifies R6G molecule with excellent independent test performance. In particular, SERSNet
shows 95.9% balanced accuracy for the cross-batch testing task.

Keywords: surface enhanced Raman spectroscopy; molecule detection; machine learning; deep
learning

1. Introduction

Surface-Enhanced Raman Spectroscopy (SERS) is a commonly used sensing technique
that shares the advantages of conventional Raman spectroscopy, such as easy sample prepa-
ration, molecular fingerprinting, and low signal attenuation by solvents, while improving
sensitivity. Specifically, the surface of the SERS device, which is often coated with metal
nanoparticles, induces surface plasmon resonance localized on the metal surface to amplify
the Raman scattering signal of the target molecule by up to 108 or more [1]. Therefore, the
SERS provides greater system design flexibility than Raman spectroscopy, making it suit-
able for portable applications such as detection of pathogen [2], water pollutant [3,4], and
counterfeit [5], etc. Despite these successes, it is difficult to identify meaningful patterns in
the SERS measurements and this often requires sophisticated signal processing techniques
due to the inherent fluctuations and nonlinearities of signals originating from interactions
between target molecules and the surface of the SERS device.

The recent advancement of machine learning (ML) provides opportunities to resolve
these problems. Machine learning-based improvement of the biosensors is also reported
recently. For example, Meyer et al. [6] proposed an SVM-based classification model to im-
prove the DNA biosensor. Hassoun et al. [7] proposed an SVM-based classification model
to classify three cell types. Singh et al. [8] reviewed recent advancements in electrochemical
biosensors and the application of machine learning in these biosensing applications includ-
ing the SERS biosensors. In addition, some of the recent studies have also demonstrated
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successful biosensing applications in response to the COVID-19 pandemic, such as in the
detection of SARS-CoV-2 related proteins or in the detection of the virus itself [9,10]. These
efforts provide examples of the successful application of machine learning techniques
in biosensing. Other studies have reported successful applications of the ML models on
the SERS measurements, see, for example, in [11–18]. For an instance, Amjad et al. [11]
developed a random forest (RF) classifier to identify the origin of milk from four different
species. The test accuracy of the trained random forest (RF) classifier was reported to be
93.97%. Dies et al. [13] reported a new SERS substrate assembly method and the proposed
support vector machine (SVM)-based illicit drug detection model. Their reported accuracy of
the identification of cocaine was 100%. Kim et al. [15] reported a paper-based SERS device
for diagnosing prenatal disease in women. They used principal component analysis SVM
(PCA-SVM) as a classifier to detect abnormal status from amniotic fluids. Their reported
accuracy of the device was above 93%. Weng et al. [19] proposed some deep learning
(DL) models for drug recognition in urine using fully connected neural network (FCNN),
and convolution neural network (CNN). They have compared the accuracy of their model
with conventional ML models such as random forest (RF), K-nearest neighbor (KNN)-based
classifier, and SVM. Their reported best test accuracy was 98.05%. Leong et al. [20] have
proposed an SERS-based taster which can recognize wine flavors. They have combined the
so-called SERS taster with the SVM model to detect molecules for different flavors such
as menthol, linalool, and limonene. Ciloglu et al. [21] proposed an SERS-based pathogen
detection using the DNN. They classify multi-drug resistant staphylococcus aureus (MRSA)
to methicillin-sensitive staphylococcus aureus. We refer to the review article [18] that summa-
rizes machine learning and deep learning applications for the SERS biosensors including
food, forensics, pathogen detection, medical diagnosis, and chemometric sensors. More
general discussion about the application of machine learning and deep learning for Raman
spectroscopy can be found in [22]. A summary of the research conducted on machine
learning-based SERS biosensor is presented in Table 1.

Table 1. Summary of research conducted on machine learning-based SERS biosensor.

Problem Technique Reference

Cell type classification SVM [7] (2018)
Origin of milk classification (from 4 species) RF [11] (2018)
Blood origin classification PLSDA [14] (2018)
Illicit drug detection SVM [13] (2018)
Prenatal disease diagnosis PCA-SVM [15] (2018)
Food colorants detection PCA [12] (2018)
Prostate cancer detection PCA [17] (2018)
Odor source direction identification SVM, CNN [16] (2019)
DNA sensing SVM [6] (2020)
Drug recognition in urine FCNN, CNN [19] (2020)
Wine flavor classification SVM [20] (2021)
Pathogen detection DNN [21] (2021)

The aforementioned studies suggest that the ML models can effectively solve the
specific molecule detection problem using the SERS measurements. Unfortunately, relevant
datasets and models are generally not furnished, so it is impossible to benchmark if one
wants to improve the model performance against existing methods. Moreover, there is
a lack of consensus in the preparation of the dataset and evaluation of the models, so
the reported performance of the existing models could be questionable. Furthermore,
there is limited discussion about the relationship between preprocessing of the SERS
dataset and the performance of the ML and DL models. Therefore, it is often difficult to
choose appropriate techniques for specific models to perform new molecule detection tasks.
Although a recent study discusses a statistical approach for background removal for the
SERS dataset, it is specialized in flow-based SERS sensor combined with the LC-MS [23]
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and did not provide an in-depth discussion about the relationship between ML/DL models
and preprocessing techniques.

Detection of biomolecules by the SERS measurements has been extensively studied,
including nucleotides, nucleic acids, amino acids, peptides, and proteins [24]. However,
the acquired SERS signal is difficult to analyze due to the inherent variability of each
SERS device fabrication method and the nonlinearity of the signal. Towards this end,
many studies have focused on fabricating reproducible devices to reduce measurement
variabilities, see, for instance, in [25–27]. Unfortunately, little effort has been devoted to
developing methods based on signal processing and machine learning.

Several applications of machine learning have been reported in the fields of the SERS
signal acquisition and data analysis [18,19]. However, there was not enough discussion
about the performance of the machine learning models according to the SERS preprocess-
ing methods and the reproducibility according to the batch-effect. To solve this problem,
different normalization methods, such as Power Spectrum density Normalization (PSN)
and feature-specific Batch Normalization (BN), were considered in this study to prepare
a benchmark for the performance evaluation of various machine learning models. In
addition, two independent experimental batches were constructed to conduct training
and independent evaluation for examining the reproducibility of the trained models. The
combinations of optimal model and preprocessing techniques for R6G molecule detection
were derived by examining the variations in model performance between batches through
the independent test set evaluation.

The R6G is a widely used molecule for the characterization of biosensors. It has
been extensively used for molecule tagging in several bio-applications. For example,
Chen et al. [28] proposed SERS-based surface-corrugated nanopillars for biomolecular
detection of colorectal cancer. In their experiment, they used R6G molecule to characterize
the sensing mechanism of their SERS device, which utilized quenching of fluorescence
molecule Cy5. Tzeng et al. [29] also used the R6G as a control molecule for their adenine
detection SERS sensor. Similarly, Vikulina et al. [30] verified the analytical performance
of porous Au micro shells for detection of Rhodamine B. Sung et al. [31] used the R6G to
characterize the performance of SERS substrate. These examples illustrate the importance
of the R6G detection task in biosensing applications.

In this study, we used R6G as a proof of a concept (POC) molecule for the basic SERS
+ ML/DL biosensing concept which can be applicable to a wide range of applications of
the SERS-based sensing techniques. Specifically, we propose the SERS-based molecule
detection model using a deep neural network, coined as the SERSNet. To train the proposed
SERSNet, we first design a new benchmark dataset for molecule detection tasks in the
SERS measurements. We use Rhodamine 6G (R6G) as our target molecule as it is a
well-characterized and widely used molecule in the SERS-based biomolecule detection
applications such as protein detection [32]. Then, we conducted an extensive explanatory
data analysis (EDA) on the SERS dataset to provide an insight into the relationship between
different preprocessing techniques and the performance of different machine learning
methods for the SERS-based molecule detection tasks. The performance of the trained
model is evaluated on an independently measured SERS spectra.

This article is organized as follows. The material and method used in this study are
discussed in Section 2, followed by a detailed analysis of experimental results in Section 3.
Finally, the conclusions are drawn in Section 4.

2. Materials and Methods

In this section, we provide a detailed description of the proposed SERS-based molecule
detection framework. Figure 1 presents the configuration of the proposed method.
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Figure 1. Configuration of the proposed surface-enhanced Raman spectroscopy-based R6G molecule detection using deep
neural network SERSNet. (A) Experimental setup for the SERS measurements. (B) Proposed SERSNet architecture.

2.1. SERS Measurements

In this study, we use Rhodamine 6G (R6G) as our target molecule. The R6G was
purchased from Sigma Aldrich (Seoul, South Korea) and the molecule is prepared in
deionized water. We use commercially available SERS substrates (Kwanglim Precision
Co., Ltd., Daegu, South Korea) for the measurements. The wavelength of the Raman
spectrometer (NS200, Nanosystems Co., Ltd., Daejeon, South Korea) is 785 nm, and the
laser power and exposure time are fixed at 200 mW and 500 ms, respectively. To acquire
the SERS spectra, we drop a 2.5 uL sample on the SERS substrate and dry it at room
temperature (27 ◦C). To minimize signal degradation, each SERS measurement is recorded
with 10 s intervals. Each measurement sample S ∈ R1×2000 (SERs spectrum) consists
of 2000 wave-numbers (attributes). Figure 1 shows the experimental setup used for the
measurement of the SERS dataset.

For each concentration, the SERS measurments are acquired using a separate substrate.
We perform two consecutive experiments, named as bacth1 and batch2. In each batch,
we have 500 negative SN ∈ R500×2000 and 1500 positive SP ∈ R1500×2000 samples. The
concentration of ≥0.01 µM is used as the threshold for positive (detection) which is in
accordance to the reported limit of detection of the R6G molecule [33]. In particular, we
acquire 5 concentrations data. In batch1, we measure 0 µM, 10 µM, and 10,000 µM. In
batch2, 0.01 µM, 0.1 µM, and 100 µM are measured. Complete description of the sample
distribution is provided in Table 2.

Table 2. Sample Statistics of the R6G

Negative Positive

concentration (uM) 0 0.01 0.1 10 100 10,000

batch1 500 0 0 500 0 500

batch2 0 500 500 0 500 0

2.2. Preprocessing

In machine learning-based model designing, data preprocessing is one of the crucial
steps. Towards this end, we use two normalization techniques. The normalization is the
removal of sources of systematic variation between sample profiles to ensure that the
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spectra are comparable across related sample sets [34]. In particular, we consider power
spectrum density normalization (PSN) and feature-specific batch normalization (BN). The PSN
for j-th wavenumber of i-th sample Si,j is defined as

Spsni,j =
Si,j

ΣSi
, (1)

where Spsn is the power spectrum normalized signal and ΣSi is the sum of all intensity
values for a sample Si,j. Similarly, the BN for j-th wavenumber of i-th sample Si,j is
defined as

Sbni,j =
Si,j − µSj

σSj

, (2)

where Sbn is the batch-normalized signal, and µSj and σSj are, respectively, the mean and
standard deviation for all samples within a batch.

2.3. Model Configurations

Figure 1B shows the architecture of the proposed SERSNet. The proposed SERSNet
model is based on a multi-layer perceptron (MLP) neural network. The architecture of the
proposed MLP network consists of a single input layer of length 2000, a hidden layer with
100 neurons, and an output layer with only one neuron providing binary output to detect
signal. For all neurons, rectified linear unit (ReLU) activation is used, with an exception of
the output layer where logistic activation is used.

2.4. Model training

The SERSNet is trained using 80% data from a single batch. For data splitting, we
use stratified splitting method using train test split function in scikit-learn [35] package.
After model training, the remaining 20% is used for validation, and a model with greater
than 90% balanced accuracy is used for testing. Later, the trained model is used for the
performance evaluation on the independent dataset (obtained from a different batch).
The model is trained to minimize log-loss function using Adam optimizer. The model is
implemented using the scikit-learn package with default settings on Python 3.

2.5. Performance Evaluation

It is worthwhile mentioning that conventional accuracy is not suitable to quantify the
true performance due to the imbalanced nature of our dataset. Thus, we use the balanced
accuracy (BACC) as our primary performance metric supplemented with the other metrics
such as sensitivity, specificity, F1 score, Matthews correlation coefficient (MCC), and Youden’s
index. To analyze threshold-independent performances, we used the area under the curve
(AUC) for receiver operating characteristic (ROC) and precision–recall (PR) curves.

3. Results and Discussion

We qualitatively evaluate the identification difficulty of the measured SERS data
through PCA using different preprocessing techniques in Section 3.1. Later, the results of
the proposed model are discussed in Section 3.2. Finally, the results are compared with
other state-of-the-art machine learning techniques in Section 3.3.

3.1. Exploratory Data Analysis

Figure 2 show SERS spectrum profiles for RAW, and PSN and BN preprocessing
techniques. First row of the Figure 2 shows SERS spectrum of batch1 datasets while the
second row of the Figure 2 shows batch2 datasets. As PSN normalizes only the signal
power, it only adjusts the range of values while preserving the shape of the spectrum. In
contrast, BN transforms the signal shape by incorporating variance of the batch dataset
and highlighting the discriminating features.
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Figure 2. Visualization of the R6G SERS spectrum for RAW, power spectrum density normalization (PSN), and feature-
specific batch normalization (BN) methods. (A), (B), (C): Batch1 RAW, PSN and BN prepressed datasets, (D), (E), (F): Batch2
RAW, PSN and BN prepressed datasets. (i.e.,Top: batch1, Bottom: batch2. Left: raw data, Middle: PSN, and Right: BN).

Before building and evaluating machine learning models, we analyze the effect of
different preprocessing techniques. Towards this end, we visualized the preprocessed low-
dimensional embedding of R6G. Figure 3 shows the PCA embedding of the SERS spectrum
for each batch and class (positive/negative) of R6G according to the preprocessing methods.
As shown in Figure 3A,D, respectively, positive and negative samples of batch1 and batch2
are clustered in the raw data in a way that they can not be linearly separated in their
respective classes. Therefore, we cannot use a single classifier to separate positive and
negative samples of both batches in the given raw data alone. This indicates that there exist
some domain generalization problems which can seriously affect the performance of the
classifier on unseen data /batch.

To handle the aforementioned batch-effect, we investigate two different preprocessing
techniques explained in Section 2. Figure 3B,E, respectively, show the PCA embedding of
batch1 and batch2 using PSN. Although the PSN showed better alignment between two
batches, it did not remove the batch-effect. In contrast, the proposed BN shows desired
batch-effect removal in Figure 3C,F and improves the class separability.

It is noteworthy to point out that the PCA is a linear embedding technique and it
may not represent the actual class separability in nonlinear space (which is explored in
MLP). However, it indicates the effect of preprocessing techniques and their importance for
designing a reliable prediction model that can work for varying measurement conditions.
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Figure 3. Visualization of the PCA embedding of R6G SERS Spectrum for RAW (A and D), power spectrum density
normalization (PSN, B and E), and feature-specific batch normalization (BN, C and F) methods. The PCA embedding
is learned with 80% training dataset of one batch and the dataset of the other batch is projected using the learned PCA
embedding. Top: batch1, Bottom: batch2. Left: raw data, Middle: PSN, and Right: BN.

3.2. Performance Evaluation of SERSNet

The model is trained and tested for cross-batch datasets. We perform 10 independent
trials and report mean and standard deviations for each performance metric. Table 3 shows
the individual and average results of different batches. The results are shown for the MLP
model that is trained using RAW, PSN, and BN preprocessing techniques. It can be seen
from the results that the proposed method (BN+MLP) has consistent performance for both
batches and it outperforms the RAW and PSN preprocessing techniques. Overall, the
proposed method (BN+MLP) has achieved 0.969, 0.977, 0.930, 0.959, and 0.917 average
accuracy, F1-Score, MCC, BACC and YI, respectively, which in turn are 0.310, 0.465, 0.929,
0.501, and 0.170, and 0.298, 0.206, 0.411, 0.210, and 0.083 units higher than the RAW and
PSN-based implementations.
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Table 3. Performance summary of the SERSNet.

Model Train Test Accuracy Sensitivity Specificity F1-score MCC BACC Youden’s Index

RAW
Batch1 Batch2 0.667 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.800 ± 0.000 0.000 ± 0.000 0.500 ± 0.000 0.000 ± 0.000

Batch2 Batch1 0.651 ± 0.034 0.976 ± 0.050 0.000 ± 0.000 0.788 ± 0.025 −0.042 ± 0.088 0.488 ± 0.025 −0.024 ± 0.05

Average 0.659 ± 0.025 0.988 ± 0.037 0.000 ± 0.000 0.794 ± 0.019 −0.021 ± 0.064 0.494 ± 0.018 −0.012 ± 0.037

PSN
Batch1 Batch2 0.676 ± 0.092 0.517 ± 0.141 0.995 ± 0.008 0.669 ± 0.129 0.510 ± 0.103 0.756 ± 0.068 0.511 ± 0.135

Batch2 Batch1 0.667 ± 0.000 0.500 ± 0.000 1.000 ± 0.000 0.667 ± 0.000 0.500 ± 0.000 0.750 ± 0.000 0.500 ± 0.000

Average 0.671 ± 0.064 0.508 ± 0.098 0.997 ± 0.006 0.668 ± 0.089 0.505 ± 0.071 0.753 ± 0.047 0.506 ± 0.093

Proposed (BN)
Batch1 Batch2 0.971 ± 0.002 0.999 ± 0.002 0.916 ± 0.007 0.979 ± 0.002 0.936 ± 0.005 0.957 ± 0.003 0.915 ± 0.007

Batch2 Batch1 0.966 ± 0.006 0.979 ± 0.009 0.940 ± 0.011 0.975 ± 0.004 0.924 ± 0.013 0.960 ± 0.005 0.920 ± 0.011

Average 0.969 ± 0.005 0.989 ± 0.012 0.928 ± 0.015 0.977 ± 0.004 0.930 ± 0.011 0.959 ± 0.005 0.917 ± 0.009

The aforementioned metrics are threshold dependent, therefore, to analyze thresh-
old independent performance we plot the receiver operating characteristic (ROC), and
precision–recall curves (PRC) and calculated their area under the curve (AUC). To summa-
rize the statistics, the curves are drawn by taking the average of the results for both batches.
Figure 4A shows the ROC curve of SERSNet for independent test sets using RAW, PSN,
and BN datasets. As expected, the proposed model showed almost perfect ROC curves and
the area under the ROC curve (AUROC) of the proposed model is 0.987. In contrast, the
curves for the RAW and BN cases are below the random-chance line (AUROC = 0.5) and
have AUROC 0.487 and 0.388, respectively. Similarly, Figure 4B shows the precision–recall
curve of SERSNet for the same configuration. Again the proposed model has shown almost
perfect PR curves and the area under the PR curve (AUPRC) of the proposed model is 0.993.
RAW dataset showed relatively better performance than PSN case (0.726 vs. 0.702). From
this analysis, we confirmed that the proposed BN + SERSNet have robust performance
across the wide range of threshold values.

Figure 4. (A) ROC and (B) PR curves of RAW (blue), power spectrum density normalization (PSN, green), and feature-
specific batch normalization (BN, red) methods + SERSNet. As anticipated the proposed (BN + MLP) SERSNet showed
almost perfect ROC and PR curves while RAW showed relatively better curves than PSN case. The values in the parentheses
are AUROC and AUPRC.

3.3. Comparative Analysis

For comparative analysis, we consider logistic regression (LR) with ridge constraint
(with `2 penalty of C = 1), Gaussian Naive Bayes (NB) [36] with prior of (0.5 and 0.5), decision
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tree (DT) [37] with ’Gini’ as measure of impurity, random forest (RF) with 100 estimators,
support vector machine with a linear kernel (LinSVM) [38,39], and with radial basis function
kernel (RBFSVM) [40]. We use balanced class weights and `2 penalty of C = 1 for both
SVM models, and consider kernel coefficient γ = 1/(2000× σ2

si
) for the RBFSVM. Here, σ2

si
stands for variance of the spectrum.

All models are implemented using scikit-learn package [35] on Python 3 and are trained
and tested using a bath-normalized dataset as it provides the best tolerate against domain
adaptation problems (as shown in Table 3). The models are trained and tested using
cross-batch and same-batch datasets for inter-batch and intra-batch performance analysis
respectively. All experiments are repeated for 10 independent trials and mean and standard
deviations of performance statistics are reported.

3.3.1. Inter-Batch Prediction Performance

In this study, we analyze the cross-batch training performance of each model. In
particular, we compare the balanced accuracy of the proposed model with the aforemen-
tioned machine learning models. As shown in Table 4, for batch1 training and batch2 testing
case, LR and LinSVM, show similar performance as compared to the proposed model.
However, for batch2 training and batch1 testing case, LR and LinSVM show the worst per-
formance among all other models, and only the proposed model has achieved satisfactory
performance (BACC 0.960). As these two models are linear and all the nonlinear models
showed relatively better performance in the batch2 training and batch1 testing case, it is
most likely that the classification boundary is highly nonlinear. Since the proposed model
can learn nonlinear classification boundaries more efficiently than other models, it renders
the best performance among all other models. In a nutshell, the proposed method shows
consistent performance for both batches and achieve 0.959 BACC that is 0.256, 0.283, 0.209,
0.274, 0.478, and 0.238 units higher than the LR, LinSVM, NB, DT, RF, and RBFSVM-based
implementations, respectively.

Table 4. Performance comparison between the proposed model and 6 ML models. The proposed
model showed the best independent test balanced accuracy (BACC) results for both batch datasets.

Models
Train/Test

Average
Batch1/Batch2 Batch2/Batch1

LR 0.960 ± 0.000 0.446 ± 0.032 0.703 ± 0.257

LinSVM 0.953 ± 0.001 0.399 ± 0.010 0.676 ± 0.277

NB 0.749 ± 0.000 0.750 ± 0.000 0.750 ± 0.001

DT 0.737 ± 0.198 0.633 ± 0.119 0.685 ± 0.052

RF 0.431 ± 0.032 0.530 ± 0.007 0.481 ± 0.049

RBFSVM 0.894 ± 0.003 0.548 ± 0.004 0.721 ± 0.173

Proposed 0.957 ± 0.003 0.960 ± 0.005 0.959 ± 0.002

We also observed that the model trained on the batch1 dataset performed better than
the model trained on the batch2 dataset. All models except the proposed one do not work
well in the batch2 dataset training batch1 data test scenario. That may be due to the low
probability of separation between positive and negative samples in the batch2 data set,
especially the 0.0 µM and 0.1 µM samples, as shown in Figure 2. Therefore, to classify
datasets with low separability, it is recommended to train the classifier on a dataset of a
high dynamic range that can better differentiate between positive and negative examples.

3.3.2. Intra-Batch Prediction Performance

In addition to inter-batch analysis, i.e., different-batch training and testing, we also
analyze the performance of individual models within each batch using 10-folds cross-
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validation, as shown in Table 5. As inter-batch classification is trivial as expected, we
found that almost all models perform equally well in this scenario. The simplest and
linear models perform best whereas the proposed model (MLP + BN) performs second-best
achieving a BACC of 0.997± 0.006 which is only 0.001 units lower than the LR model. On
the other hand, the NB performs the worst while the Tree-based models such as the DT
and RF perform similar to the proposed model. We argue that without defining evaluation
protocol (intra-batch or inter-batch) reporting high performance may be misleading. These
results indicate that the intra-batch analysis is a trivial task, and it can be decisive in
selecting the best model. One of the main contributions of this study is that we highlight
this reporting issue and provide an evaluation protocol for the machine learning-based
SERS classification models.

Table 5. Performance comparison between the proposed model and 6 ML models. The proposed
model showed the best 10-fold CV test balanced accuracy (BACC) results for both batch datasets.

Model
Train/Test

Average
Batch1/Batch1 Batch2/Batch2

LR 0.999 ± 0.003 0.996 ± 0.007 0.998 ± 0.006

LinSVM 0.998 ± 0.004 0.997 ± 0.006 0.997 ± 0.005

NB 0.789 ± 0.024 0.789 ± 0.030 0.789 ± 0.026

DT 0.979 ± 0.020 0.946 ± 0.020 0.962 ± 0.026

RF 0.994 ± 0.005 0.980 ± 0.012 0.987 ± 0.012

RBFSVM 0.998 ± 0.003 0.974 ± 0.017 0.986 ± 0.017

Proposed 0.998 ± 0.003 0.995 ± 0.007 0.997 ± 0.006

4. Conclusions

In this study, an optimal preprocessing technique, model training, and evaluation
method for the SERS-based R6G molecule detection were proposed, and a benchmark
dataset was provided to lay the foundation for advanced model construction. The proposed
model showed excellent performance on the R6G molecule detection task compared to
other machine learning models. In this study, we considered R6G as a proof-of-concept
molecule for the basic SERS + DL biosensing concept, which is widely used for the char-
acterization of SERS-based biosensors. Based on the model developed in this study, we
plan to conduct applied research on various biomolecules such as proteins and bacterial
cell detection in the future. Our model can be applied to these applications to improve the
reproducibility of SERS-based biosensors, as evident in the present study. As intra-batch
analysis is a trivial task, we argue that without defining evaluation protocol (intra-batch or
inter-batch) reporting high performance can be misleading. One of the main contributions
of this study is that we highlight this reporting issue and provide an evaluation protocol
and a public dataset for the machine learning-based SERS classification models. We believe
that these results can be used as a benchmark for the further development of advanced
biomolecule detection models based on SERS measurements, such as end-to-end deep
learning models.
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