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Abstract

The reconstruction of multipolar acoustic or electromagnetic sources from their far-
field radiation patterns plays a crucial role in numerous practical applications. Most of
the existing techniques for source reconstruction require dense multi-frequency data at the
Nyquist sampling rate. Accessibility of only sparse data at a sub-sampled grid contributes
to the null space of the inverse source-to-data operator, which causes significant imaging
artifacts. For this purpose, additional knowledge about the source or regularization is
required. In this article, we propose a novel two-stage strategy for multipolar source
reconstruction from the sub-sampled sparse data that takes advantage of the sparsity of
the sources in the physical domain. The data at the Nyquist sampling rate is recovered
from sub-sampled data and then a conventional inversion algorithm is used to reconstruct
sources. The data recovery problem is linked to a spectrum recovery problem for the signal
with the finite rate of innovations (FIR) that is solved using an annihilating filter-based
structured Hankel matrix completion approach (ALOHA). For an accurate reconstruction
of multipolar sources, we employ a Fourier inversion algorithm. The suitability of the
suggested approach for both noisy and noise-free measurements is supported by numerical
evidence.

Keywords: ALOHA; compressed sensing; inverse source problem; multipolar source; sparse
data imaging

1 Introduction

Inverse source problems have numerous applications in science and engineering, particularly
in the fields of biomedical imaging [1, 2, 3], non-destructive testing [4], telecommunication [5],
seismology [6], and atmospheric sciences [7, 8]. Several algorithms have been developed for
the resolution of inverse source problems in acoustic and electromagnetic media given their
potential applications, experimental setup, practical needs or source types, and mathematical
or engineering aspects.
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Leone, Maisto, and Pierri [5] employed inverse source problems in electromagnetic media to
synthesize conformal antennas. Beltrachini et al. [2] and Thio et al. [1] have used inverse source
problems to simulate neuron responses for intracranial recordings and for electroencephalography
(EEG). In a similar vein, inverse source problems have been used in magnetoencephalography
(MEG), for example, in [9]. An inverse problem for the reconstruction of temporally localized
acoustic sources relevant to photoacoustic tomography has been dealt with by Ammari et al. [3].
Given their potential uses in security robots, cross-correlation-based passive imaging algorithms
were suggested in [8] for locating correlated ambient noise sources in attenuating acoustic media.
A deep learning elastography framework that uses sparse dynamic measurements was suggested
in [10].

On the technical side, Devaney, Marengo, and Li [11] developed a broad mathematical
framework for inverse source problems in non-homogeneous media and proposed an optimization
framework for reconstructing the minimal-energy sources. A framework based on finite elements
was proposed in [12] for the detection of multipolar sources with applications in EEG. To
find directive sources that resemble Gaussian beams, Eibert et al. [13] suggested a solution
framework based on the Huygens radiator concept. Multiple Signal Classification (MUSIC)
algorithms for inverse source problems were discussed in [14].

The only measurements of the radiated waves that can be taken in the majority of real-world
inverse source problems and imaging setups are multi-frequency discrete measurements. The
application of many mathematical methods is stymied by this restriction. The existence of non-
radiating sources whose signatures cannot be captured raises concerns about the availability of
a unique solution. Mathematical discussions on the issue of the existence of a unique solution for
multi-frequency discrete measurements may be found, for example, in [15, 16]. For these issues,
several mathematical algorithms have been put forth. There are some potential workarounds,
such as least-squares-based minimum energy solutions [11], regularization techniques [17], or
making use of some à priori knowledge about the sources [18]. By using measurements over a
range of frequencies in an open interval, certain strategies overcome the non-uniqueness issue.
For example, we mention [19] for expansion methods, [20, 21] for recursive algorithms, [22] for
sampling methods, [23, 24] for Fourier approaches, and [25] for factorization techniques.

In this article, we propose a novel numerical strategy for solving the inverse source problem of
imaging multipolar acoustic sources from sparse multi-frequency far-field data. The suitability
of multipolar sources for localization of epileptogenic sources using EEG [2, 12], neuron response
modeling using stereo-EEG (sEEG) [1], cortical cavity localization using MEG [9], and confocal
antenna synthesis [5] serves as the impetus behind our work.

In the past, factorization [25], Prony’s [26], MUSIC [14], and compressed sensing [27] al-
gorithms have been used to identify multipolar acoustic sources using sparse far-field data.
However, the advantage of the inherent sparsity of multipolar sources in the physical medium
has never been taken. In this article, we take advantage of this inherent sparsity of the multipo-
lar sources to recover an enriched set of measurements at the Nyquist sampling rate and then
adopt a Fourier inversion approach previously suggested in [23, 24] to reconstruct these sources.
Based on the theory of the signal with the finite rate of innovations (FRI) [28], we relate the
problem of the recovery of measurements to the low rankness of a structured Hankel matrix and
use an annihilating filter-based low-rank Hankel matrix completion approach (ALOHA) [29, 30].

The rest of the article is organized as follows. In Section 2, we mathematically formulate
the inverse problem of interest. In Section 3, we discuss the integration of ALOHA with the
Fourier inversion method. Numerical results and a discussion are provided in Section 4. The
conclusion is provided in Section 5.
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2 Mathematical formulation

We assume that S(x) is a frequency-independent multipolar source function defined by

S(x) :=

J∑
j=1

(λj +ψj · ∇x) δ(x− zj), J ∈ N+, (1)

where δ is the Dirac mass and ∇x is the distributional gradient with respect to x ∈ Rd, for d = 2
or 3. The points z1, z2, · · · , zJ ∈ Rd denote the locations of component multipolar sources that
are compactly embedded in the box

A :=
(
−a

2
,
a

2

)d
⊂ Rd, a ∈ R+,

and constants λj ∈ R and ψj ∈ Rd+ are the corresponding intensities that satisfy conditions

|λj |+ |ψj | 6= 0 and |λjψj | = 0, for j = 1, · · · , J. (2)

The radiation pattern, u(x, k), of the multipolar source S(x) satisfies the Helmholtz equa-
tion,

(∆ + k2)u(x, k) = S(x), x ∈ Rd,

and Sommerfeld’s outgoing radiation condition,

lim
|x|→∞

|x|(d−1)/2

(
∂u

∂|x|
− ιku

)
(x, k) = 0, ι :=

√
−1. (3)

The parameter k ∈ R+ is the so-called wavenumber. We highlight that the radiation condition
holds uniformly with respect to all directions

x̂ :=
x

|x|
∈ Sd−1 :=

{
x ∈ Rd : |x| = 1

}
,

where Sd−1 represents the unit ball in Rd. Here and throughout this article, a quantity with
length normalized to one is marked by a superposed hat.

The outgoing radiation condition (3) guarantees the existence of an analytic field u∞ :
Sd−1 × R+ → C that signifies the far-field radiation signature of the radiated field u and is
defined by the relation

u(x, k) =
e−ιk|x|

|x|(d−1)/2

(
u∞(x̂, k) +O

(
1

|x|

))
, |x| → ∞.

To define the multi-frequency measurement grid, we introduce a parameter ε ∈ R+ such
that ε→ 0+ and set `0 := (ε, 0) for d = 2 or `0 := (ε, 0, 0) for d = 3. We also introduce

ŷ` :=

{
ˆ̀, ` ∈ Zd \ {0},
ˆ̀
0, ` = 0,

(4)

k` :=
2π

a

{
|`|, ` ∈ Zd \ {0},
ε, ` = 0,

(5)
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and

Sd−1
dis :=

{
ŷ` ∈ Sd−1

∣∣∣ ` ∈ Zd
}
.

Let ΩM := {x̂1, · · · , x̂M} ⊂ Sd−1
dis be the full set of sampling points at the Nyquist sampling

rate, i.e., the sampling points, x̂m, for m = 1, · · · ,M , are chosen kmin/2 distant apart from each
other, where kmin := min{k1, · · · , kM} with km defined by (5), associated with the sampling
point x̂m defined by (4). We also define the sparse set of measurement points, ΩMR

, as a
(randomly chosen) subset of ΩM for R�M , i.e.,

ΩMR
:= {x̂Mr

| r = 1, · · · , R} ⊂ ΩM ⊂ Sd−1
dis .

We consider the following inverse source problems in this article.

Problem 2.1 (Full measurements inverse source problem). Recover the source function S(x)
defined in (1) given the multi-frequency far-field data{

u∞(x̂m, km)
∣∣∣ x̂m ∈ ΩM , m = 1, · · · ,M

}
.

Problem 2.2 (Sparse measurements inverse source problem). Recover the source function S(x)
defined in (1) given the multi-frequency far-field data{

u∞(x̂Mr
, kMr

)
∣∣∣ x̂Mr

∈ ΩMR
, r = 1, · · · , R

}
.

3 Hankel matrix completion approach

The full measurement multi-frequency data inverse source problem (Problem 2.1) was solved
in [23] using a Fourier inversion technique. To this end, recall that S can be represented by the
Fourier series

S(x) =
∑
`∈Zd

s̃`φ`(x) with s̃` =
1

ad

ˆ
A
S(x)φ`(x)dx.

Here, the superposed bar indicates complex conjugate and the Fourier basis functions, φ`(x),
are given by

φ`(x) := eι
2π
a `·x, ` ∈ Zd.

The Fourier coefficients, s̃`, can be easily calculated using the far-field measurements. To this
end, the following result is proved in [23, Theorem 2.1].

Theorem 3.1. Let x̂` and k` be, respectively, defined by (4) and (5), then the Fourier co-
efficients {s̃`}`∈Zd of S(x) can be determined uniquely by {u∞(x̂`, k`) | ` ∈ Zd} and for any
positive integer N → +∞,

s̃` =− 1

adγd
u∞(x̂`, k`), ` ∈ Zd \ {0}, (6)

s̃`0 ≈−
επ

ad sin(επ)γd
u∞(x̂`0 , k`0) +

∑
1≤|`|∞≤N

s̃`

ˆ
A
φ`(y)φ`0(y)dy, (7)

where N is a truncation parameter to retain a finite number of terms in the inversion and

γd :=
eιπ/4√
8πk`

for d = 2 or γd :=
1

4π
for d = 3.
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Given Theorem 3.1, the source S can be reconstructed very accurately when enough multi-
frequency measurements are available at dense sampling points x̂ ∈ ΩM at the Nyquist sam-
pling rate, as all the Fourier coefficients can be calculated subject to measurement noise and
an approximation of s̃`0 . However, the situation changes drastically when the recording grid is
under-sampled. A part of the source S behaves like a non-radiated component since its radia-
tion signature is not detected. The missing spectrum corresponding to the unrecorded sampling
points and unused frequency profiles contributes to the null space of the inverse source-to-data
operator due to under-sampling [10, 30]. To this end, a traditional remedy is to use conven-
tional or sparsity-promoting regularization methods to solve Problem 2.2 [27]. As numerically
illustrated in Section 4, such regularization approaches are not very useful because the size of
the speckle field introduced by the under-sampling is comparable to or even larger than the size
of the multipolar sources. Contrary to the conventional regularization approaches, we suggest
exploiting the sparsity of the multipolar sources inside the background medium. In this section,
we propose a two-stage numerical strategy to address Problem 2.2. We assume a sampling at
the Nyquist rate and that the given sparse measurements constitute a (random) part of the
full grid measurements while the rest are missing. Subsequently, we link the missing spectral
values to the low-rankness of a structured Hankel matrix and recover them using ALOHA. Once
the full Nyquist grid measurements are recovered, we use Theorem 3.1 in the second stage to
recover the source S.

Since S is sparsely supported in the box A ⊂ Rd, it has a sparsely distributed Fourier
spectrum in the low spatial frequency regions. Therefore, according to the sampling theory of a
signal with a finite rate of innovations [28], there exists an annihilating filter, h̃, in the Fourier
domain for the corresponding spectral vector s̃ at the Nyquist sampling rate such that

(h̃ ? s̃)k :=

n∑
i=0

[h̃]i[s̃]k−i = 0.

Here, [u]i represents the ith component of the vector u, n+ 1 is the length of the annihilating

filter h̃, and ? is the convolution operator. Consequently, the structured Hankel matrix (a
sub-matrix of the corresponding convolution matrix),

Hp(s̃) :=


s̃1 s̃2 · · · s̃p
s̃2 s̃3 · · · s̃p+1

...
...

. . .
...

s̃M s̃1 · · · s̃p−1

 ,

associated to the vector s̃ ∈ RM is rank-deficient if the matrix-pencil size p (< M) is chosen
larger than the minimum annihilating filter size since

Hp(s̃)h̃′ = 0,

where h̃′ is the flipped version of vector h̃. Specifically, it was shown in [30, Theorem II.1] that
if the minimum annihilating filter length is n+ 1,

rank (Hp(s̃)) = n.

Interested readers are referred to the articles [29, 30] for further details.
Given the relations (6) and (7) and sparsely sampled spectral measurements, {u∞(x̂Mr

, kMr
) | x̂Mr

∈
ΩMR

}, the estimation problem of recovering the missing spectrum {u∞(x̂M , kM ) | x̂M ∈ ΩM \
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ΩMR
} for s̃ can be formulated as the low-rank Hankel matrix completion problem,

arg min
g∈CM

‖Hp(g)‖∗ subject to PΩMR
(g) = PΩMR

(s̃), (8)

where PΩMR
denotes the projection on the set ΩMR

and ‖ · ‖∗ denotes the matrix nuclear
norm. A unique minimizer to the structured matrix completion problem (8) is guaranteed with
probability 1− 1/M2 under a standard incoherence assumption on Hp(g) [30].

Several algorithms can be used to solve the low-rank matrix completion problem (8) but
we use ALOHA [29] in the proposed numerical scheme due to its robustness and performance
guarantee. It is a singular value decomposition (SVD)-free algorithm that uses a low-rank
factorization model for initialization. Specifically, the optimization problem (8) is first converted
to the constrained optimization problem

min
g∈C

(
‖U‖2F + ‖V‖2F

)
subject to Hp(g) = UVH and PΩMR

(g) = PΩMR
(s̃),

based on the observation that

‖Hp(g)‖∗ = min
(U,V)∈M

(
‖U‖2F + ‖V‖2F

)
, where M :=

{
(U,V) | Hp(g) = UVH

}
,

and then solved using the alternating direction method of multipliers (ADMM) [31]. We specify
that the superposed H above represents the Hermitian transpose and ‖ · ‖F is the Frobenius
norm. Once a minimizer g∗ is found, the required source function S(x) can be reconstructed
as

Srecon(x) =

M∑
m=1

[g∗]mφm(x).

4 Numerical experiments and discussion

In this section, we provide evidence of the suitability of the proposed two-stage numerical
strategy. We first present the experimental setup in Section 4.1 and then discuss reconstruction
results in Section 4.2.

4.1 Experimental setup

For numerical simulations, we consider a two-dimensional setting. The multipolar acoustic
source S consists of two monopoles and two dipoles (see Fig. 1). The monopoles are located at
positions z1 := (5, 4) and z2 := (−4, −4) with magnitudes λ1 := 9 and λ2 := 8, respectively.
The dipoles are located at positions z3 := (−4, 5) and z4 := (4, −4) with intensities ψ3 :=
(1, −1)T and ψ4 := (−1, 1)T , respectively. Note that ψ1 = 0 = ψ2 and λ3 = 0 = λ4 due to
conditions (2).

Following definitions (4) and (5), the admissible sets of observation directions and wavenum-
bers are defined as

XN :=

{
x̂` =

`

|`|

∣∣∣ 1 ≤ |`|∞ ≤ N
}
∪ {(1, 0)} ,

KN :=

{
k` =

2π|`|
a

∣∣∣ 1 ≤ |`|∞ ≤ N
}
∪
{

2π

a
ε

}
.
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Figure 1: Configuration of the multipolar sources. Red points denote the monopoles and blue
points denote the dipoles.

The arc length a of the domain, parameter ε, and Fourier series truncation parameter N are set
to a = 12, ε = 10−3, and N = 20. The synthetic far-field patterns are generated by numerical
integration of the formula

u∞(x̂`, k`) = −γd
ˆ
A
S(y) e−ιk`x̂`·y dy.

We perform source reconstruction for two scenarios: (1) ideal measurement conditions with-
out measurement noise, and (2) extremely noisy measurement conditions with an additive white
Gaussian noise (AWGN) having a signal-to-noise ratio (SNR) of 3dB. For each scenario, four
different sub-sampling rates, 5%, 10%, 15%, and 30%, were considered. The performance of
the proposed algorithm was evaluated on three different criteria: (1) visual perception in terms
of the peak-signal-to-noise ratio (PSNR), (2) structural similarity in terms of the structural
similarity index measure (SSIM), and (3) computational time in terms of walk-clock run-time.

Each reconstructed image obtained from sparse far-field data using ALOHA is compared
with (1) original image obtained from fully-sampled data at Nyquist rate, (2) input image
obtained from the sub-sampled data without any regularization, and (3) L1-CS image obtained
from the sub-sampled data with an L1-compressed sensing-based sparse regularization [32].

For signal recovery, the number of filters in ALOHA was set to 15, but all other settings were
kept to the default configuration. For the L1-CS, CVX, an all-platforms (v1.22) redistributable
CVX package for specifying and solving convex programs [33], was used. The visualization of
monopole sources is somewhat limited in the input and L1-CS images, even with 30% measure-
ments. Accordingly, the scales of the individual images are adjusted to emphasize the visual
results. For computational time estimation, both ALOHA and L1-CS were implemented on the
MATLAB cloud platform running on an Intel(R) Platinum 8375C CPU @ 2.90 GHz CPU, of
clock speed 3464.412 MHz, equipped with 128GB RAM.

4.2 Numerical results

Numerical simulations with noise-free and noisy measurements are presented in Figs. 2 and 3,
respectively. Fig. 2 shows that the conventional algorithm is unable to properly identify point
sources from sub-sampled, noise-free data. The L1-CS approach improves the overall signal
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strength and compensates for the measurement losses in terms of PSNR even when just 5% of
the measurements are used, but the gain is not effective enough. The performance of the L1-
CS method is susceptible to the number of available measurements. The speckle field induced
by the sub-sampling has random hot spots with typical diameters comparable to the size of
the sources. As a result, it is challenging to distinguish the sources from the hot spots. The
proposed ALOHA-based strategy, on the other hand, effectively reconstructs the sources using
sparse measurements and preserves the quality even with just 5% of the original measurements.
For the noisy measurement scenario, similar observations can be made. Fig. 3 shows that when
the number and diameter of the hot spots in the speckle field increase due to under-sampling,
the optical enhancement provided by L1-CS is less pronounced. Nevertheless, ALOHA is still
able to provide incredibly efficient results.

Figure 2: Multipolar source reconstruction using noise-free measurements. Top to bottom: 5%,
10%, 15%, and 30% measurements.

For further analysis, PSNR, SSIM, and computational time are evaluated for 0 to 100% of
measurements with and without additive white Gaussian noise. Table 1 provides a quantita-
tive performance comparison of the sparse reconstruction algorithms. The superiority of the
proposed approach is substantiated in Fig. 4 for both the noise-free and noisy measurement
scenarios. Since the target spectrum only consists of point sources, fewer measurements pro-
duce the speckle field in the background medium, which lowers the structural similarity. As a
result, for measurements under 50%, the structural similarity of the sub-sampled reconstruction
decreases as the number of measurements rises, but it begins to rise for measurements beyond
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Figure 3: Multipolar source reconstruction using noisy measurements with additive white Gaus-
sian noise of 3dB SNR. Top to bottom: 5%, 10%, 15%, and 30% measurements.

50%. Although the L1-CS method increases PSNR at higher sampling rates, the structural
similarity is not improved since its SSIM is smaller than the sub-sampled input in some cases.
In contrast, the proposed ALOHA-based approach produces excellent PNSR and SSIM results
even with just 5% measurements. Interestingly, with 100% noisy measurements, all curves meet
at the same point (i.e., maximum PSNR and SSIM); however, for sub-sampled noisy measure-
ments, ALOHA not only recovers the lost signal but also lowers the noise (see PSNR and SSIM
curves in Fig. 4 (Bottom)).

Another benefit of using ALOHA over the conventional sparse reconstruction approach L1-
CS is its computational complexity. Fig. 4 (right column) compares the walk-clock run-time of
ALOHA with that of the L1-CS method. Once again, it is evident that the proposed Hankel
matrix completion approach outperforms the conventional sparsity-promoting regularization
approaches. The L1-CS method has a computational cost that is exponentially proportional
to the number of measurements, whereas that for ALOHA is linear. This substantiates the
robustness of the proposed approach.

5 Conclusions

We propose a two-stage numerical scheme for reconstructing multipolar sources using sparse
multi-frequency far-field data. First, the sparse data is enriched using a structured Hankel
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Metric SNR (dB) Algorithm/Measurements 5% 10% 15% 30%

PSNR (dB)

∞
Sub-sampled Input 24.7407 24.9904 25.4443 26.3654

L1-CS 24.6796 26.2436 27.1251 31.3453
ALOHA 41.4397 49.1918 54.8742 61.0166

3
Sub-sampled Input 24.7387 24.9463 25.3056 26.2187

L1-CS 24.6485 25.4674 26.3238 29.6587
ALOHA 34.8373 35.8095 39.2726 37.3999

SSIM

∞
Sub-sampled Input 0.6692 0.6035 0.5769 0.5157

L1-CS 0.4979 0.5452 0.5146 0.7120
ALOHA 0.9689 0.9820 0.9901 0.9974

3
Sub-sampled Input 0.6515 0.5896 0.5626 0.4809

L1-CS 0.4725 0.4757 0.4684 0.5623
ALOHA 0.9173 0.8937 0.9018 0.8661

Table 1: Quantitative performance comparison of the reconstruction algorithms with sparse
data.
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Figure 4: Quantitative performance evaluation using (Top): noise-free far-field measurements,
(Bottom): noisy far-field measurements with additive white Gaussian noise of 3dB SNR.

matrix completion approach. The sources are then reconstructed using the Fourier inversion
algorithm from enriched data at the Nyquist rate. The measurement recovery problem is recast
as the recovery problem for the missing spectrum of signals with a finite rate of innovations,
which is solved using an annihilating filter-based structured Hankel matrix completion approach
(ALOHA). Simulation results provide evidence that the proposed algorithm is much superior
to the traditional regularization-based inversion strategies. We compared the peak signal-to-
noise ratio (PSNR), structural similarity index measure (SSIM), and computational cost of the
proposed approach with the sparsity-promoting L1 compressed sensing regularization technique.
The proposed numerical scheme provides simulation results with a 10.1dB PSNR (41%) and a
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0.266 SSIM (40.8%) increase in the worst-case scenario with a linear computing cost for both
noise-free and noisy data with 3dB noise.
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