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This article presents a stable numerical solution to the steady flow of thermodynamic compatible third
grade fluid past a porous plate. Problem formulation is completed through partial slip condition. The
inability of classical Lagrange-Galerkin methods to provide a stable approximate solution to the envis-
aged flow problem is demystified. To prevail over the instability issues, a streamline-upwind-Petrov-Gal
erkin method is invoked. The results thus substantiate an apposite agreement with theory. The stability
of the approximate solution is testified and appropriate conclusions on flow profile are delineated.
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Introduction

It has been generally accepted now that the Newtonian fluids
through linear relationship between the stress and rate of strain
do not describe several phenomena observed for fluids in industry
and other engineering applications. Specifically the viscoelastic
flows arise in polymer processing, coating, ink-jet printing,
microfluidics, hemodynamics, geological flows in the earth mantle
and several others. Modeling and analysis of viscoelastic flows is
very important for understanding and predicting the behaviour
of processes and thus for designing optimal flow configurations
and for operating conditions. Several constitutive equations for vis-
coelastic fluids have been developed in view of their diverse char-
acteristics (see [1–10] for some recent studies and many related
references therein).

The differential type viscoelastic fluids is one of the categories
of non-Newtonian fluids. Second grade fluid is simplest subclass
of differential type liquids. This type of fluids are able to predict
the normal stress effects. However important features of several
fluids in terms of shear thinning and shear thickening cannot be
predicted be the constitutive equations of second grade fluids.
The third grade fluids can capture shear thinning and shear thick-
ening effects even in the steady flow situations. No doubt extra
rheological parameters in the constitutive equation of third grade
fluid lead to more complex differential system when compared
with the second grade fluid. Also the differential system for unidi-
rectional flow of second grade fluid is linear whereas it is nonlinear
for third grade fluid. Further the steady unidirectional flow of sec-
ond grade fluid over rigid surface does not take into account the
viscoelastic effects whereas third grade fluid can capture these fea-
tures easily even in such flow configurations.

The curiosity to understand flows of viscoelastic fluids often
triggers challenging and elusivemathematical problems rarely hav-
ing exact solutions. The governing equations related to these flows,
like most of the other dynamical systems, are partial differential
equations that are strongly non-linear and hard-won to solve. An
added difficulty for non-Newtonian, and particularly graded fluids,
is the discrepancy between the order of the governing equations
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and the number of boundary conditions at hand (i.e. fewer condi-
tions than the order). Thus, one requires an over-determined infor-
mation in order to obtain a unique solution consistent with the
corresponding Newtonian flow [11]. Therefore, these flow prob-
lems more often do not possess a physically admissible unique
closed form analytic solution or even if there exists one, it is really
intricate to find and further more daunting to use in practice. Con-
sequently, the approximate and asymptotic solution techniques are
in order.

Whenever the rheological parameters are favorable and the con-
stitutive equations are weakly non-linear, asymptotic techniques
usually lead to convergent series solutions valid over a range of
parameters. But for strongly nonlinear problems and for large val-
ues of certain characteristic parameters such as Reynolds, Péclet or
Weissenberg numbers, these methods fail to produce convergent
solutions, leaving only the choice of numerical techniques, see,
for example, [12]. However, the Péclet and Reynolds numbers gov-
ern the global stability of the numerical solutions and for convec-
tion dominated problems, wherein these parameters have very
large values, it is well established that most of the numerical tech-
niques yield unstable solution [13–15]. Nevertheless, numerical
strategies have been developed over the recent past in order to
overcome the instability of the approximate solutions emerging
from strong non-linearity, convection dominance or parabolic-
hyperbolic nature of the governing equations. Special attention
has been paid to a variety of upwind Galerkin and Petrov-Galerkin
techniques, refer to [14–18] and references contained therein.

The most celebrated stabilized finite element method for con-
vection dominated problems is the streamline-upwind-Petrov-Galer
kinmethod, wherein the weight functions are modified by adding a
penalty term acting only in the flow direction. The diffusion
induced by penalizing the weight functions using streamline
upwind effects render a stabilized solution whereas consistent
Petrov-Galerkin formulation imparts high order accuracy in the
approximation.

The principle concern of this study is the numerical exploration
of a graded flow problem. Precisely, flow of a steady incompress-
ible Rivlin-Ericksen fluid of grade three over a horizontal plate with
suction or injection subject to a slip condition is considered and the
approximate fluid velocity field, based on a streamline-upwind-Pet
rov-Galerkin finite element method, is presented. The aim of the
present work is two fold:

1. To highlight the convection dominated nature of the aforemen-
tioned flow problem and thereby unveiling the inability of stan-
dard Galerkin approximation proposed recently in [19].

2. To provide a stabilized formulation to the flow problem thereby
providing a stable approximation to the fluid velocity.

In this work, a slip condition is imposed on the fluid velocity at
the porous plate. It is frequent to validly presume that the particles
adjacent to the boundaries take on the velocity of the boundaries,
termed as no-slip, that is indeed true for several flows. However,
there are situations when these particles move along the bound-
aries with a finite tangential velocity, different from that of the
boundaries rendering a slip effect that is strongly dependent on
the stress. The references can be made, for example, to the capillary
flow of highly entangled polyethylene [20], boundary flow of coat-
ing lubricants [21], and flow of pastes of soft particles [22]. More-
over, the spurt and sharkskin effects in fluids are certainly
correlated with the slip effect. We can refer to [10] and references
therein for a brief account on slip effect and the historical
developments.

The rest of this contribution is arranged in the following man-
ner. The non-dimensional problem formulation is presented in Sec-
tion ‘‘Problem formulation”. A naive numerical scheme using
classical Lagrange-Galerkin finite element method is provided in
Section ‘‘Standard Galerkin formulation”. A few numerical results
are presented to highlight the convection dominated nature of
the problem (see Section ‘‘Numerical simulations and discussion”).
After a brief introduction to convection dominated problems, a sta-
bilized formulation to the flow problem using streamline-upwind-
Petrov-Galerkin (SUPG) approach is provided in Section ‘‘Streamli
ne-upwind-Petrov-Galerkin formulation”. Finally, the findings of
the investigation are summarized in Section ‘‘Concluding remarks”.
Problem formulation

Here we are interested to examine the flow of non-Newtonian
fluid past a porous plate at y ¼ 0. The x-axis is taken along the plate
while y-axis is normal to x� axis. The third grade fluid model is
considered. The plate is subjected to both effects of uniform suc-
tion and injection (or blowing) velocity V0. Here V0 corresponds
to suction case while V0 < 0 indicates the blowing phenomenon.
The equations relative to flow of an incompressible fluid are

r � U ¼ 0; ð1Þ

q
@

@t
þ U � r

� �
U ¼ r � T; ð2Þ

where body forces are neglected, t is time and the velocity U in pre-
sent steady flow consideration is

U ¼ uðyÞ;�V0;0ð Þ; ð3Þ
in which u is velocity parallel to the x-axis, q is the density and con-
stitutive relationship for Cauchy stress tensor Tð Þ in thermody-
namic compatible third grade fluid is given by

T ¼ �pIþ lþ b trA2
1

� �
A1 þ a1A2 þ a2A

2
1: ð4Þ

In above expression p is the fluid pressure, l the dynamic vis-
cosity, a1 the viscoelasticity, a2 the cross viscosity, I the identity
tensor, b the third grade material parameter, tr the trace and the
first two Rivlin-Erickson tensors Ai i ¼ 1;2ð Þ satisfy
A1 ¼rUþ ðrUÞy; ð5Þ
A2 ¼ U � rð ÞA1 þA1rUþ ðrUÞyA1; ð6Þ
where y signifies the matrix transpose. Now incompressibility con-
dition (1) is identically satisfied and Eqs. (2)–(6) yield

qv0
du
dy

þ ld2u

dy2
� a1v0

d3u

dy3
þ 6b3

du
dy

� �2 d2u

dy2
¼ 0: ð7Þ

The partial slip condition in terms of tangential stress becomes

uð0Þ ¼ j
l
Txy

����
y¼0

¼ j
l

ldu
dy

� a1v0
d2u

dy2
þ 2b3

du
dy

� �3
" #

y¼0

; ð8Þ

where j is the slip parameter and

lim
y!1

uðyÞ ¼ u1: ð9Þ

Augmentation process leads to the following definitions

lim
y!1

du
dy

¼ 0 and lim
y!1

d2u

dy2
¼ 0: ð10Þ

It is worthmentioning to note that in present case of third grade
fluid the condition (8) is nonlinear whereas in second grade fluid it
is linear. Even such condition is linear in corresponding flow of
third grade fluid when no-slip condition holds.

The resulting boundary value problem can be non-
dimensionalized using the following dimensionless quantities,
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by :¼ qu1
l

y; bu :¼ u
u1

; cv0 :¼ v0

u1
; ca1 :¼ qu2

1
l2 a1;

cb3 :¼ q2u4
1

l3 b3; bc :¼ qu1
l

j: ð11Þ

By virtue of (11) after dropping the hats for brevity one can
write

v0
du
dy þ d2u

dy2
� a1v0

d3u
dy3

þ 6b3
du
dy

� �2
d2u
dy2

¼ 0; y 2 ð0;1Þ;

uð0Þ ¼ c du
dy � a1v0

d2u
dy2

þ 2b3
du
dy

� �3	 

y¼0

;

lim
y!1

uðyÞ ¼ 1; lim
y!1

du
dy ¼ 0; lim

y!1
d2u
dy2

¼ 0:

8>>>>>>><>>>>>>>:
ð12Þ

On integrating first equation in (12) over ðy;þ1Þ and using con-
ditions at infinity, we obtain

v0uþ du
dy

� a1v0
d2u

dy2
þ 2b3

du
dy

� �3

¼ v0 ð13Þ

The above equation together with the partial slip condition
yields

uð0Þ ¼ cv0

1þ cv0
: ð14Þ

Hence the velocity field u finally satisfies the following bound-
ary value problem:

�a1v0
d2u
dy2

þ du
dy þ v0uþ 2b3

du
dy

� �3
¼ v0; y 2 ð0;1Þ;

uð0Þ ¼ cv0
1þcv0

and lim
y!1

uðyÞ ¼ 1:

8><>: ð15Þ
Standard Galerkin formulation

This section is in order to demystify the inability of the standard
Galerkin finite element method for providing a stable approxima-
tion to the velocity field u satisfying (15). We will proceed here
with a naive Galerkin discretization to fix the ideas related to
approximation and interpolation spaces. This will also serve as a
building block for the endeavor to obtain a stable finite element
solution using an SUPG-method discussed in the next section.

Since the boundary value problem (15) is defined on a physical
domain ð0;þ1Þ, one must truncate the domain to a synthetic arti-
ficial bounded domain in order to deploy a finite element method.
However, to render a well-posed boundary value problem in the
interior domain whose solution is compatible with the original
one over the physical domain, an artificial boundary condition over
the boundaries emerging from the domain truncation is indispens-
able. Refer to [23,24] and references therein for instance for a
detailed discussion on imposing valid artificial boundary condi-
tions. However, since the velocity satisfying (15) approaches to a
uniform main stream velocity which is equal to 1, we have
uðyÞ ’ 1 at large values of y by virtue of the far field boundary con-
dition limy!1uðyÞ ¼ 1. Therefore in the present study it is sufficient
to truncate the physical domain to a bounded domain ð0; ymaxÞ
with ymax being very large to mimic þ1 so that uðymaxÞ ’ 1. Pre-
cisely we consider the following boundary value problem to model
the velocity profile henceforth:

�a1v0
d2u
dy2

þ du
dy þ v0uþ 2b3

du
dy

� �3
¼ v0; y 2 ð0; ymaxÞ;

uð0Þ ¼ cv0
1þcv0

and uðymaxÞ ¼ 1:

8<: ð16Þ

By virtue of the transformation
wðyÞ ¼ uðyÞ � uHðyÞ with uHðyÞ ¼ uð0Þ þ y
ymax

ð1� uð0ÞÞ; ð17Þ

the boundary value problem (16) yields

�a1v0
d2w
dy2

þ b dw
dy þ v0wðyÞ þN wð Þ ¼ f ðyÞ;

wð0Þ ¼ 0 ¼ wðymaxÞ;

(
ð18Þ

with

NðwÞ ¼ 2b
dw
dy

� �3

þ 3d0
dw
dy

� �2
" #

and f ðyÞ ¼ � v0uH þ v1ð Þ;

ð19Þ
where

d0 ¼ 1
ymax

1� uð0Þð Þ; b ¼ 1þ 6b3d
2
0 and v1 ¼ 2bd30 þ d0 � v0:

ð20Þ
In the rest of the section, a numerical exposition of the bound-

ary value problem (18) is provided which together with transfor-
mation (17) helps us to infer on the stability of the approximate
solution to the flow problem (16).

Variational formulation

This section is dedicated to present a weak form of the problem
(18) and to collect a few notions and notations indispensable for
spatial discretization of the flow problem. Henceforth, the space
L2ðXÞ equipped with the inner product and norm respectively
defined as

/;wð ÞL2ðXÞ ¼ /;wð Þ ¼
Z
X
/wdy and k/kL2ðXÞ ¼ k/k ¼

Z
X
j/j2dy

� �1=2

ð21Þ
represents the space of square integrable functions over the domain
X ¼ ð0; ymaxÞ. Further, H1ðXÞ denotes the usual Sobolev space and
H1

0ðXÞ denotes the closure of C1
0 ðXÞ in H1ðXÞ where C1

0 ðXÞ repre-
sents the space of infinitely continuous functions with compact
support in X; see for instance [25]. Recall that H1ðXÞ and H1

0ðXÞ
are equipped with following inner products and norms,

/;wð ÞH1 :¼ /;wð Þ1 ¼ /;wð Þ þ d/
dy

;
dw
dy

� �
and

/;wð ÞH1
0
:¼ /;wð Þ0 ¼ d/

dy
;
dw
dy

� �
; ð22Þ

/k kH1 :¼ /k k1 ¼ k/k2 þ d/
dy

���� ����2
 !1=2

and

/k kH1
0
:¼ /k k0 :¼ /j j1 ¼ d/

dy

���� ����; ð23Þ

where j � j1 represents a semi-norm in H1ðXÞ. Equipped with the
aforementioned notions and notations, we are now in position to
introduce the following weak form of the flow problem (18).

Weak Form. Find w 2 H1
0ðXÞ such that

bðw;/Þ þ NðwÞ;/ð Þ ¼ lð/Þ for all / 2 H1
0ðXÞ; ð24Þ

where l : H1
0ðXÞ ! R and b : H1

0ðXÞ � H1
0ðXÞ ! R are respectively

defined by

lð/Þ :¼ f ;/ð Þ and bð/;wÞ :

¼ a1v0
d/
dy

;
dw
dy

� �
� b /;

dw
dy

� �
þ v0 /;wð Þ: � ð25Þ
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Lagrange-Galerkin finite element approximations

Let 0 ¼ y1 < y2 < � � � < yn < ynþ1 ¼ ymax. Define the partition of
the domain X into n subdomains Xi ¼ yi; yiþ1

� �
for i ¼ 1;2; . . . ;n

such that

X ¼
[n
i¼1

Xi and Xi

\
Xj ¼ £; 8i– j:

Let each element Xi has ne local nodes y1i < y2i < � � � < ynei ; such
that y1i ¼ yi and ynei ¼ yiþ1. Further assume that h is the uniform
length of elements Xi, that is,

h :¼ ymax

n
:¼ yiþ1 � yi:

Define a sequence of finite dimensional approximation sub-

spaces Vh
0ðXÞ

n o
h>0

of H1
0ðXÞ by

Vh
0ðXÞ :¼ / 2 H1

0ðXÞ
��� /jXi

2 PkðXiÞ; 8i ¼ 1;2; . . . ; n
n o

; ð26Þ

where PkðXiÞ; k P 1 is a finite element interpolation space of poly-
nomials with degree at most k over each element Xi. With an aim to
approximate the unknown functionw 2 H1

0ðXÞwithwh 2 Vh
0ðXÞ, we

interpolate w over each element Xi. The approximate solution
wi

h 2 Vh
0ðXÞ over Xi can be obtained as

wi
hðyÞ ¼

Xne
j¼1

wi
jw

i
jðyÞ; y 2 Xi ¼ ½yi; yiþ1�; ð27Þ

where wi
j is the unknown nodal value of the function wi

h at the local

node yj
i , where j ¼ 1;2; � � � ;ne. Here wi

j are the interpolation polyno-

mial basis elements of degree k associated with local nodes y j
i over

the element Xi defined by the relation wi
jðymi Þ ¼ djm, where djm

denotes the Kronecker’s delta. In the same spirit, the discrete weak
formulation of the flow problem (18) is given by

Discrete Weak Form. Find wi
h 2 Vh

0ðXÞ for i ¼ 1;2; . . . ;n, such
that

bðwi
h;vhÞ þ Nðwi

hÞ;vh
� � ¼ lðvhÞ for all vh

2 Vh
0ðXÞ and y 2 Xi: � ð28Þ

Substituting ansatz (27) in the discrete weak form (28) and
choosing vh as the basis elements wi

j, we arrive at the non-linear
system of equations

Ai
hW

i þ NiðWi;WiÞ ¼ FiðWiÞ; ð29Þ
where for p; q 2 f1;2; . . . ; neg,

Wi
� �

p
:¼wi

p; Wi
� �

p
:¼wi

p; Fi
� �

p
:¼ f ;wi

p

� �
; Ni
� �

p
:¼ N;wi

p

� �
;

Ai
1

� �
qp :¼

dwi
p

dy ;
dwi

q

dy

� �
; Ai

2

� �
qp :¼ wi

p;
dwi

q

dy

� �
; Ai

3

� �
qp :¼ wi

p;w
i
q

� �
;

Ai
h :¼ a1v0A

i
1 �bAi

2 þv0A
i
3:

8>>>><>>>>:
ð30Þ

The non-linear system of Eq. (29) can be written in terms of a

non-linear function G : Vh
0ðXÞ

� �Nh ! RNh as

G Wð Þ :¼ AhWþ NðWÞ � FðWÞ ¼ 0; ð31Þ

where Nh ¼ dim Vh
0

� �
. In order to find W satisfying (31), one

requires the use of an iterative procedure. In the following, a New-
ton iteration method is invoked to solve (31). The following algo-
rithm explains the basic structure of the numerical scheme which
is then implemented in MatLab to carryout the simulations.
Implementation scheme

i Initialize the input parameters involved in the matrix equa-
tions, such as a1; b, and v0.

ii Create a mesh with n elements Xi; i ¼ 1;2; . . . ;n having nþ 1
nodes.

iii Allocate memory for the global matrix Ah, Jacobian matrix J

of non-linear function G of order ðNh þ 1Þ � ðNh þ 1Þ, vectors
N and F of order ðNh þ 1Þ � 1 and initialize all matrix entries
to zero.

iv Initialize and start While loop for Newton iterations.

a. For i ¼ 1;2;3; . . . ; n, do Compute the element stiffness

matrixAi
h, non-linear vector N

i and right hand side vector Fi.
b. Add element matrices into the corresponding global
matrices at respective positions.
c. Find the Jacobian matrix J.
d. Apply the Newton’s iteration to update the solutions.

Terminate the While loop.
v Apply boundary conditions and plot the solutions.

Numerical simulations and discussion

In this section, we demystify the numerical instability of Galer-
kin approach detailed in the previous subsection for the flow prob-
lem (15). The numerical tests are performed with P2 Lagrange
interpolation functions with ymax ¼ 10 and the following initial
guess for the Newton iteration method

euðyÞ ¼ 1� ð1� uð0Þð Þe�a1v0y: ð32Þ
In Figs. 1–2, a comparison of the fabricated exact solution u is

made with the approximate solution uh for different choices of vis-
coelasticity modulus a1 and cross flow velocity v0. Two different
behaviors of the numerical solutions are observed. When a1 and
v0 have large values, the Galerkin solution is in good agreement
with the exact one. However, when a1v0 ! 0 the flow problem
becomes convection dominated and node to node oscillations
appear in the numerical solutions.
Streamline-upwind-Petrov-Galerkin formulation

The appositeness of standard finite element methods, especially
Galerkin methods, to evince most elliptic, structural and heat flow
problems thereby providing highly accurate approximate solutions
to them is well established. This is indeed due to symmetric nature
of the associated stiffness matrices. In many engineering applica-
tions, for example, in fluid flows or convective heat transfer prob-
lems where convection is really dominant, these methods do not
work adequately and give spurious oscillations in the approxima-
tions. The Péclet numbers expressing the inter-relation of convec-
tion and diffusion govern the global stability of the numerical
solutions. Their high values lead to the generation of interior and
boundary layers, indeed, due to the vanishing nature of the highest
order derivative with a significant one of first order. Consequently,
classical methods produce oscillations around high gradient
regions corrupting the approximate solution since these oscilla-
tions travel along in the entire domain by the convection as an
automotive force. On the other hand, the favoring symmetry of
the stiffness matrices is lost, thereby producing only sub-optimal
results; refer to [13,14].

Different remedies to numerical instability caused by convec-
tion dominance have been proposed. One way to avoid the wiggles
in the approximate solutions is to drastically refining the mesh so
that convection dissipates on an element level thereby rendering
the element Péclet numbers very small compared to the global
one. However, this is computationally very expensive. In view of



Fig. 1. Comparison of the exact solution with approximate solution using standard Galerkin approach for viscoelasticty modulus a1 ¼ 0:03 (left) and a1 ¼ 0:05 (right).

Fig. 2. Comparison of the exact solution with approximate solution using standard Galerkin approach for cross flow velocity v0 ¼ 0:1 (left) and v0 ¼ 0:001 (right).
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their analogy with central difference approximations, introducing
upwind effects in Galerkin methods is another approach to prevent
instability in the approximate solutions to convection dominated
problems. Several upwind techniques have been developed and
understood, see, for instance, [16,18]. These methods have shown
significant improvements over the classical Galerkin methods for
the linear homogeneous convective models. Unfortunately, for
more general problems or in higher dimensions wherein source
term or non-linearity is involved these methods fail to give ade-
quate approximate solutions.

The streamline-upwind-Petrov-Galerkin (SUPG) technique of
Brooks & Hughes [14] is one of the most powerful and robust
upwind techniques which tackles the intrinsic deficiencies of other
upwind finite element methods while keeping the stabilization
effects intact. This technique is based on the idea that the upwind
effect is only required along streamlines. This is in contrast to other
upwind techniques wherein Galerkin methods are inconsistently
augmented with an artificial diffusion for the purpose and fail to
produce satisfactory results due to the crosswind diffusion. In SUPG
technique, the upwind effects are introduced in consistent Petrov-
Galerkin formulations only along the streamlines by perturbing
classical weight functions using a discontinuous perturbation act-
ing in the direction of the flow. As a consequence, it provides a sta-
bilized solution with same order of accuracy as offered by standard
Galerkin formulations [13–15].

Stabilized formulation

The aim here is to adopt SUPG finite element technique to sta-
bilize the numerical approximation of the fluid velocity. We start
by precising that the Péclet number associated with flow problem
(16) is given by Pe :¼ 1

a1v0
.We also define the element Péclet num-

ber by Peh :¼ h
2a1v0

. The initial step of the SUPG technique is to aug-

ment the standard weight functions vh 2 Vh
0 by a perturbation

proportional to dvh
dy , that is, the weight functions are taken to be



Fig. 3. Comparison of the exact solution with approximate solution using standard Galerkin and SUPG formulations for ða1; v0Þ ¼ ð0:05;1Þ (left) and ða1;v0Þ ¼ ð2:5;001Þ
(right).

Fig. 4. Influence of a1 on the fluid velocity u.
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ev h :¼ vh þ s
dvh

dy
; 8vh 2 Vh

0; ð33Þ

where s, coined as intrinsic time, is a stabilization parameter opti-
mally controlling the amount of artificial diffusion needed while
retaining high order accuracy. Since, the functions vh are piecewise
polynomials, they are infinitely differentiable inside each element
but merely continuous at the nodes. Thus ev h are jump-
discontinuous and consequently their derivatives involve Dirac-
delta at inter-element boundaries. This forbids the integration over
X in the modified weighted formalism. However, the ostensible dif-
ficulty can be precluded by stabilizing only inside the interior of the
elements. This further helps to maintain the global continuity
requirements [15].

In the sequel, we coin the following as stabilized weak form of
the flow problem (16).
Stabilized Form. Find wh 2 Vh
0ðXÞ such that
bðwh; vhÞ þ NðwhÞ; vhð Þ þ
Xn
i¼1

si RhðwhÞ;dvh

dy

� �
Xi

¼ lðvhÞ for all vh 2 Vh
0ðXÞ; ð34Þ
where Rhð/Þ :¼ �a1v0
d2/
dy2

þ b d/
dy þ v0/þNð/Þ � f is the residual,

/;wð ÞXi
:¼ RXi

/wdy and
si :¼ h
2
# j
i Peh
� �

; j ¼ 1;2; . . . ;ne: ð35Þ

Here # j
i ¼ # j

i Peh
� �

are called the upwind functions. h



Fig. 5. Influence of b on the fluid velocity u.

Fig. 6. Influence of suction velocity v0 on the fluid velocity u.
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Remark. The upwind functions # j
i are chosen in such a way that

the upwind solution becomes nodally exact. For P1 and P2

elements, these functions can be given respectively by; refer to
[17]

# j
i :¼ cothðPehÞ � 1

Peh
� �

; j ¼ 1;2; ð36Þ

and

#2
i :¼ 1

2 coth Peh
2

� �
� 2

Peh

� �
# j
i :¼

3þ3Pehð Þ tanh Pehð Þ� 3Pehþ Pehð Þ2#2i
� �

2�3#2i tanh Pehð Þð Þ Pehð Þ2 ; j ¼ 1;3:

8>><>>: ð37Þ

For a given segment Xi and weight functions
ewi
j :¼ wi

j þ # j
i

h
2
dwi

j

dy
; j ¼ 1;2; . . . ;ne;

Eq. (34) yields

bðwi
h;w

i
jÞ þ Nðwi

hÞ;wi
j

� �
þ h
2
# j
i Rhðwi

hÞ;
dwi

j

dy

 !
Xi

¼ lðwi
jÞ for all y 2 Xi; ð38Þ

This, together with the ansatz (27), leads to the following sys-
tem of non-linear equations

eAi
hW

i þ eBi
hW

i þ eNiðWi;WiÞ ¼ eFiðWiÞ; ð39Þ
where for p; q 2 f1;2; . . . ;neg,
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eAi
h

� �
pq

:¼ Ai
h

� �
pq �

h#ip
2 b

dwi
q

dy ;
dwi

p

dy

� �
Xi

� v0 wi
q;

dwi
p

dy

� �
Xi

	 

;

eBi
h

� �
pq

:¼ �a1v0
h#p

i
2

d2wi
q

dy2
;
dwi

p

dy

� �
Xi

;

eNi
� �

p
:¼ Ni
� �

p
þ h#p

i
2 N;

dwi
p

dy

� �
Xi

;

eFi
� �

p
:¼ Fi
� �

p
þ h#p

i
2 f ;

dwi
p

dy

� �
Xi

:

8>>>>>>>>>>><>>>>>>>>>>>:
ð40Þ
Stablized numerical illustrations

For further discussion and numerical results in this section, we
restrict ourselves only toP2 interpolation functions. The numerical
tests are performed with ymax ¼ 10 and the initial guess for the
Newton iteration method is taken as

euðyÞ ¼ 1� ð1� uð0Þð Þe�a1v0y: ð41Þ
Appositeness of SUPG formulation
As observed in Section ‘‘Numerical simulations and discussion”,

when the flow problem (16) is diffusion dominated, classical Galer-
kin method provides a numerical solution in good agreement with
the exact one. However, when a1v0 ! 0, Eq. (16) becomes convec-
tion dominated and numerical oscillations appear in the approxi-
mate solution as delineated in Figs. 1 and 2. Nevertheless, Fig. 3
substantiates that the solution obtained using stabilized formula-
tion is wiggle-free as well as precise even when the global Péclet
number is very large.

Characteristic behavior of velocity profile
In Figs. 4–7, the impact of characteristic rheological parameters

on the fluid velocity u is evinced. Fig. 4 indicates that the amplitude
of velocity field decreases with increasing values of the viscoelas-
ticity modulus a1, no matter whether a no slip or a partial slip con-
dition is imposed. Similar dependence of u on third grade modulus
b can be observed in Fig. 5. On the other hand, velocity u is a
decreasing function of the cross flow velocity v0, refer to Fig. 6.
Moreover Fig. 7 also elucidates that u is an increasing function of
the boundary slip parameter c. Further, the boundary layer thick-
ness decreases when we increase any of the parameters a1; b;v0

or c.
Fig. 7. Influence of the slip parameter c on the fluid velocity u.
From Figs. 5 and 6, it is apparent that the partial slip condition
retards the variations in u with respect to b whereas it enhances
the variations in u with respect to v0 compared to the case of a
no-slip condition. However, in Fig. 4, no significant change in the
variation of u with respect to a1 is observed in slip and no-slip sit-
uations, apart from altering the initial amplitude of the velocity
field.
Concluding remarks

In this work, numerical approximation of the velocity profile to
the steady flow of third grade fluid past a porous plate with partial
slip condition is made. Due to its convection dominated nature, the
classical Galerkin approach is not suitable to resolve the consid-
ered flow problem. The application of a streamline-upwind-Pet
rov-Galerkin technique is thus motivated and numerical results,
appropriately taking care of the underlying convection dominance,
are presented. The characteristic behavior of the velocity profile
with respect to influential flow parameters is discussed.
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