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In this paper we consider the problem of reconstructing sources in a homogeneous viscoelastic

medium from wavefield measurements. We first present a modified time-reversal imaging

algorithm based on a weighted Helmholtz decomposition and justify mathematically that

it provides a better approximation than by simply time reversing the displacement field,

where artifacts appear due to the coupling between the pressure and shear waves. Then

we investigate the source inverse problem in an elastic attenuating medium. We provide a

regularized time-reversal imaging which corrects the attenuation effect at the first order. The

results of this paper yield the fundamental tools for solving imaging problems in elastic media

using cross-correlation techniques.

Key words: Elastic wave propagation; Time-reversal algorithms; Attenuation correction;

Weighted Helmholtz decomposition; Helmholtz–Kirchhoff identity

1 Introduction

Waves in loss-less media are invariant under time transformation t → −t. This simple

observation has provided very promising techniques in a variety of domains, including

biomedical imaging [24], seismology [36], material analysis [41], land mine detection [39],

telecommunication [37] and underwater acoustics [23]. In time-reversal algorithms, an

output wave is time-reversed and retransmitted into the medium. By time invariance and

reciprocity properties, the retransmitted wave retraces its path back through the medium

and converges to the location of initial sources. This convergence of the reverted wave

holds whatever is the complexity of the underlying medium, which can be homogeneous

or scattering, dispersive or non-dispersive. See for instance [2, 22–28, 45 and references

therein] for comprehensive details and discussions on time reversal. See also [5, 11, 19, 51]

for applications of time-reversal techniques in biomedical imaging.

† This work was supported by the ERC Advanced Grant Project MULTIMOD–267184.
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The robustness and simplicity of time-reversal techniques make them an ideal choice

to resolve source localization problems. These inverse problems have been of significant

interest in recent years and find numerous applications in different fields, particularly in

biomedical imaging [4, 6, 8, 9, 40, 47]. If the sources are temporally localized, the source

localization problems are actually equivalent to find initial states of a system governed by

differential equations from the observations over some finite interval of time.

In this work, we consider the problem of reconstructing sources in a viscoelastic medium

from wavefield measurements using time-reversal methods. Our motivation is the recent

advances on hybrid methods in biomedical imaging exploiting elastic properties of soft

tissues [30]. Examples of these hybrid methods include magnetic resonance elastography

[10, 19], transient elasticity imaging [11], shear wave imaging [43] and acoustic radiation

force imaging [9, 13]. The envisaged problem is quite challenging, indeed, because time

reversibility of the wave equation breaks down in lossy media. Further, if not accounted

for, these losses produce serious blurring in source reconstruction using classical time-

reversal methods. In this paper, we use a thermo-viscous law model for the attenuation

losses. We refer, for instance, to [17, 34, 35] for detailed discussions on the attenuation

models in wave propagation and their causality properties.

The main contributions of this paper are twofold. We first provide a modified time-

reversal imaging algorithm in non-attenuating elastic media based on a weighted Helm-

holtz decomposition and a Helmholtz–Kirchhoff identity for wave propagation in elastic

media. Then we justify both analytically and numerically that the modified time-reversal

algorithm provides a better approximation than by simply time reversing the displacement

field. It has been observed that if one time-reverses the displacement field, then artifacts

appear due to the coupling between the pressure and shear waves. Moreover, the focusing

properties of the classical algorithm are not satisfying [19]. Using the new algorithm

presented in this paper, one obtains significantly improved reconstruction and focusing

properties.

Secondly, we give a regularized time-reversal imaging algorithm for source recon-

struction in attenuating media and show that it leads to a first-order approximation in

terms of viscosity parameters of the source term. For doing so, we express, using results

from [7] based on the stationary phase theorem, the relationship between the Green

tensors in attenuating and non-attenuating media. Then, with the help of a new version

of Helmholtz–Kirchhoff identity in attenuating media, we prove that a regularized image

of the source can be obtained. Finally, we present a variety of numerical illustrations to

compare different time-reversal algorithms and to highlight the potential of our original

approach.

The results of this paper yield the fundamental tools for solving imaging problems in

elastic media using cross-correlation techniques. The weighted Helmholtz decomposition

of the imaging functional together with the Helmholtz–Kirchhoff identities proved here

are the building blocks for cross-correlation techniques in elastic media. In a forthcoming

paper, the use of fundamental tools introduced in this paper for solving the problem of

reconstructing spatial support of noise sources as it has been done in the acoustic case

in [6] will be discussed. We also plan to develop efficient interferometric techniques based

on these tools to correct for the effect of random fluctuations in the elasticity parameters

on imaging and extend to the elastic case the approach investigated in [14–16].
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2 Time reversal in homogeneous elastic media without viscosity

Let us consider the homogeneous isotropic elastic wave equation in �d with d = 2, 3:⎧⎪⎨⎪⎩
∂2u

∂t2
(x, t) − Lλ,μu(x, t) =

dδ0(t)

dt
F (x), (x, t) ∈ �d × �,

u(x, t) =
∂u

∂t
(x, t) = 0, x ∈ �d, t < 0,

(2.1)

where

Lλ,μu = μΔu + (λ+ μ)∇(∇ · u). (2.2)

Here (λ, μ) are the Lamé coefficients of the medium and the density of the medium is

equal to one. The aim in this section is to design efficient algorithms for reconstructing

the compactly supported source function F from the recorded data,{
g(y, t) = u(y, t), y ∈ ∂Ω, t ∈ [0, T ]

}
, (2.3)

where Ω is supposed to strictly contain the support of F . We are interested in the following

time-reversal functional:

I(x) =

∫ T

0

vs(x, T )ds, x ∈ Ω, (2.4)

where the vector field vs is defined as the solution of⎧⎪⎨⎪⎩
∂2vs
∂t2

(x, t) − Lλ,μvs(x, t) =
dδs(t)

dt
g(x, T − s)δ∂Ω(x), (x, t) ∈ �d × �,

vs(x, t) =
∂vs
∂t

(x, t) = 0, x ∈ �d, t < s.

(2.5)

Here δ∂Ω is the surface Dirac mass on ∂Ω and g on ∂Ω × [0, T ] is the measured

displacement field (2.3).

The time-reversal imaging functional I is usually implemented to reconstruct the source

distribution in an elastic medium [19, 39, 40]. It is motivated by the time reversibility

property of elastic waves. In a general setting, however, it is not sure whether it provides a

good reconstruction of the source distribution F . Indeed the problem is that the recorded

displacement field at the surface of the domain is a mixture of pressure and shear wave

components. By time-reversing and back-propagating these signals as in (2.4), a blurred

image is obtained due to the fact that the pressure and shear wave speeds are different.

In this work, we first present a modified time-reversal imaging functional Ĩ, and justify

mathematically that it provides a better approximation than I of the source F . This new

functional Ĩ can be seen as a correction based on a weighted Helmholtz decomposition

to I (which is considered as an initial guess). In fact, using the standard L2-theory of

the Helmholtz decomposition (see, for instance, [29]), we find in the search domain the

compressional and the shear components of I such that

I = ∇ × ψI + ∇φI. (2.6)
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Then we multiply these components with cP =
√
λ+ 2μ and cS =

√
μ, the pressure and

the shear wave speeds, respectively. Finally, we define Ĩ by

Ĩ = cS∇ × ψI + cP∇φI. (2.7)

We rigorously explain why should this new functional be better than the original one. We

substantiate this argument with numerical illustrations.

Intuitively, since the measured data is a combination of both shear and pressure waves

having different phase velocities and polarization directions, a direct time reversal of the

measured data induces an interference between different backpropagating wave modes

having different phases. Indeed, a back propagated P-wave produces a P-wave as well as

an induced S-wave (PS-wave) in the backpropagation of P-wave. Similarly, a re-emitted

S-wave produces an S-wave and an induced SP-wave. As the phases of SP- and PS-waves

are not the same (due to different velocities and thus wavenumbers), the cross terms

remain in time-reversal step and induce artifacts in reconstruction. The proposed re-

weighting in the multi-speed case adjusts SP and PS wave phases so that the interference

of such waves reduces, thereby improving the resolution in the reconstruction.

In the sequel, we define, respectively, the Helmholtz decomposition operators HP and

HS by

HP [I] := ∇φI and HS [I] := ∇ × ψI. (2.8)

Actually the decomposition I = HP [I] + HS [I] can be found by solving a weak

Neumann problem in the search domain [29].

2.1 Time-reversal imaging analysis

In order to establish some results about time reversal using I and Ĩ, we use the following

integral formulation based on the elastic Green tensor.

2.1.1 Integral formulation

Let us introduce the time-dependent Green tensor G0(x, t) associated to the elastic wave

equation with a point source at 0:⎧⎪⎨⎪⎩
∂2G0

∂t2
(x, t) − Lλ,μG0(x, t) = δ0(t)δ0(x)I, (x, t) ∈ �d × �,

G0(x, t) =
∂G0

∂t
(x, t) = 0, x ∈ �d, t < 0,

(2.9)

and the corresponding outgoing time-harmonic Green tensor Ĝω,0(x) (i.e. the temporal

Fourier transform of G0(x, t)) solution of

(Lλ,μ + ω2)Ĝω,0(x) = −δ0(x)I, x ∈ �d. (2.10)

It can be expressed in the following form [1, 12]:

Ĝω,0(x) =
1

μκ2
S

(
κ2
S Ĝ

S
ω,0(x)I + D

(
ĜSω,0 − ĜPω,0

)
(x)
)
, x ∈ �d, (2.11)
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where I = (δij)
d
i,j=1 and D = ( ∂2

∂xi∂xj
)di,j=1. The coefficients

κS =
ω

√
μ

and κP =
ω√
λ+ 2μ

are the shear and the pressure wavenumbers, respectively. The function Ĝαω,0(x) is the

fundamental solution of the Helmholtz operator −(Δ + κ2
α) in �d with α = P , S . For

example, when d = 3, we have

Ĝαω,0(x) =
exp(iκα|x|)

4π|x| , α = P , S. (2.12)

For T large enough, the functional I(x) defined by (2.4) can be expressed in the

form [5]

I(x) = �e
[

1

2π

∫
�d

∫
�
ω2

[∫
∂Ω

Ĝω(x,y)Ĝω(y,z)dσ(y)

]
dωF (z) dz

]
=

1

4π

∫
�d

∫
�
ω2

[∫
∂Ω

[
Ĝω(x,y)Ĝω(y,z) + Ĝω(x,y)Ĝω(y,z)

]
dσ(y)

]
dωF (z) dz,

(2.13)

where we have introduced the outgoing Green tensor for a point source at y:

Ĝω(x,y) = Ĝω,0(x − y). (2.14)

We also introduce the decomposition of Ĝω,0 into shear and compressional components

as

Ĝω,0(x) = ĜP
ω,0(x) + ĜS

ω,0(x), (2.15)

with

ĜP
ω,0 = − 1

ω2
DĜPω,0 and ĜS

ω,0 =
1

ω2

(
κ2
S I + D

)
ĜSω,0. (2.16)

We can extend Helmholtz operators HP and HS to tensors G as follows:

HP [G]p = HP [Gp] and HS [G]p = HS [Gp] for all vectors p.

Note that ĜP
ω,0 and ĜS

ω,0 satisfy, respectively,

(Lλ,μ + ω2)ĜP
ω,0 = HP [−δ0I] and (Lλ,μ + ω2)ĜS

ω,0 = HS [−δ0I] . (2.17)

Here

HP [−δ0I] = −∇∇ · (GI), HS [−δ0I] = ∇ × ∇ × (GI),

and G(x) = 1/(4π|x|) for d = 3 [42]. Consequently, the Helmholtz decomposition of I
can be derived explicitly:

I(x) = HP [I](x) + HS [I](x), (2.18)
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with

HP [I](x) =
1

4π

∫
�d

∫
�
ω2

[ ∫
∂Ω

[
ĜP
ω(x,y)Ĝω(y,z)

+ ĜP
ω(x,y)Ĝω(y,z)

]
dσ(y)

]
dωF (z) dz,

and

HS [I](x) =
1

4π

∫
�d

∫
�
ω2

[ ∫
∂Ω

[
ĜS
ω(x,y)Ĝω(y,z)

+ ĜS
ω(x,y)Ĝω(y,z)

]
dσ(y)

]
dωF (z) dz.

Finally, the integral formulation of the modified imaging functional Ĩ defined by (2.7)

reads

Ĩ(x) = �e
[

1

2π

∫
�d

∫
�
ω2

[∫
∂Ω

[
cSĜ

S
ω(x,y) + cP ĜP

ω(x,y)
]
Ĝω(y,z)dσ(y)

]
dωF (z) dz

]
.

(2.19)

2.1.2 Helmholtz–Kirchhoff identity

In order to approximate the integral formulation (2.19) we use a Helmholtz–Kirchhoff

identity for elastic media. Some of the results presented in this section can be found

in [48,49] in the context of elastodynamic seismic interferometry. Indeed, the elastodynamic

reciprocity theorems (Propositions 2.1 and 2.5) are the key ingredient to understand the

relation between the cross-correlations of signals emitted by uncorrelated noise sources

and the Green function between the observation points.

Let us introduce the conormal derivative (∂u/∂ν)(y), y ∈ ∂Ω of the displacement field

u at the surface ∂Ω in the outward unit normal direction n by

∂u

∂ν
:= λ(∇ · u)n + μ

(
∇uT + (∇uT )T

)
n, (2.20)

where T denotes the transpose. Physically, the conormal derivative describes the surface

traction associated with the displacement field u. Also note that the conormal derivative

tensor ∂G/∂ν means that for all constant vectors p,[
∂G

∂ν

]
p :=

∂ [Gp]

∂ν
.

The following proposition is equivalent to [49, equation (73)]. Since our formulation is

slightly different and this is the first building block of our theory, we give its proof for

consistency. Moreover, elements of the proof are used in Proposition 2.2. The proof of Pro-

position 2.1 uses only the reciprocity relation and the divergence theorem. Consequently,

Proposition 2.1 also holds in a heterogeneous medium, as shown in [49].
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Proposition 2.1 For all x,z ∈ Ω, we have

∫
∂Ω

[
∂Ĝω(x,y)

∂ν
Ĝω(y,z) − Ĝω(x,y)

∂Ĝω(y,z)

∂ν

]
dσ(y) = 2i�m{Ĝω(x,z)}. (2.21)

Proof By reciprocity we have

Ĝω(y,x) =
[
Ĝω(x,y)

]T
. (2.22)

In addition, in the homogeneous isotropic case, we have Ĝω(y,x) = Ĝω(x,y), but we will

not use this property here. Our goal is to show that for all constant vectors p and q, we

have

∫
∂Ω

[
q · ∂Ĝω(x,y)

∂ν
Ĝω(y,z)p − q · Ĝω(x,y)

∂Ĝω(y,z)

∂ν
p

]
dσ(y) = 2iq · �m{Ĝω(x,z)}p.

Taking scalar product of equations

(Lλ,μ + ω2)Ĝω(y,x)q = −δx(y)q and (Lλ,μ + ω2)Ĝω(y,z)p = −δz(y)p

with Ĝω(y,z)p and Ĝω(y,x)q, respectively, subtracting the second result from the first,

and integrating in y over Ω, we obtain∫
Ω

[
(Ĝω(y,z)p) · Lλ,μ(Ĝω(y,x)q) − Lλ,μ(Ĝω(y,z)p) · (Ĝω(y,x)q)

]
dy

= p · (Ĝω(z,x)q) − q · (Ĝω(x,z)p) = 2iq · �m{Ĝω(x,z)}p.

Using the form of the operator Lλ,μ, this gives

2iq · �m{Ĝω(x,z)}p

= λ

∫
Ω

[
(Ĝω(y,z)p) ·

{
∇∇ · (Ĝω(y,x)q)

}
− (Ĝω(y,x)q) ·

{
∇∇ · (Ĝω(y,z)p)

}]
dy

+ μ

∫
Ω

[
(Ĝω(y,z)p) ·

{
(Δ + ∇∇·)(Ĝω(y,x)q)

}
− (Ĝω(y,x)q) ·

{
(Δ + ∇∇·)(Ĝω(y,z)p)

}]
dy.

We recall that, for two sufficiently smooth functions u,v : �d → �d, we have

(Δu + ∇(∇ · u)) · v = ∇ ·
[
(∇uT + (∇uT )T )v

]
− 1

2
(∇uT + (∇uT )T ) · (∇vT + (∇vT )T ),

∇(∇ · u) · v = ∇ ·
[
(∇ · u)v

]
− (∇ · u)(∇ · v).
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Therefore, we find

2iq · �m{Ĝω(x,z)}p

= λ

∫
Ω

[
∇ ·
{

[∇ · (Ĝω(y,x)q)](Ĝω(y,z)p)
}

− ∇ ·
{

[∇ · (Ĝω(y,z)p)](Ĝω(y,x)q)
}]
dy

+ μ

∫
Ω

[
∇ ·
{(

∇(Ĝω(y,x)q)T + (∇(Ĝω(y,x)q)T )T
)

Ĝω(y,z)p
}

− ∇ ·
{(

∇(Ĝω(y,z)p)T + (∇(Ĝω(y,z)p)T )T
)

Ĝω(y,x)q
}]
dy.

Now we use divergence theorem and the definition of the conormal derivative to get

2iq · �m{Ĝω(x,z)}p

= λ

∫
∂Ω

[
n ·
{

[∇ · (Ĝω(y,x)q)](Ĝω(y,z)p)
}

− n ·
{

[∇ · (Ĝω(y,z)p)](Ĝω(y,x)q)
}]
dσ(y)

+ μ

∫
∂Ω

[
n ·
{(

∇(Ĝω(y,x)q)T + (∇(Ĝω(y,x)q)T )T
)

Ĝω(y,z)p
}

− n ·
{(

∇(Ĝω(y,z)p)T + (∇(Ĝω(y,z)p)
T

)T
)

Ĝω(y,x)q

}]
dσ(y)

= λ

∫
∂Ω

[
(Ĝω(y,z)p) ·

{
∇ · (Ĝω(y,x)q)n

}
− (Ĝω(y,x)q) ·

{
∇ · (Ĝω(y,z)p)n

}]
dσ(y)

+ μ

∫
∂Ω

[
(Ĝω(y,z)p) ·

{(
∇(Ĝω(y,x)q)T + (∇(Ĝω(y,x)q)T )T

)
n
}

− (Ĝω(y,x)q) ·
{(

∇(Ĝω(y,z)p)
T

+ (∇(Ĝω(y,z)p)T )T
)

n

}]
dσ(y)

=

∫
∂Ω

[
(Ĝω(y,z)p) · ∂Ĝω(y,x)q

∂ν
− (Ĝω(y,x)q) · ∂Ĝω(y,z)p

∂ν

]
dσ(y)

=

∫
∂Ω

[
q · ∂Ĝω(x,y)

∂ν
Ĝω(y,z)p − q · Ĝω(x,y)

∂Ĝω(y,z)

∂ν
p

]
dσ(y),

which is the desired result. Note that for establishing the last equality, we have used the

reciprocity relation (2.22). �

The following proposition cannot be found in the literature, probably because its

application in the context of seismic interferometry has not yet been identified. It is an

important ingredient in the analysis of our improved imaging functional. Note that the

proofs of Propositions 2.2 and 2.3 require the medium to be homogeneous (so that HS

and HP commute with Lλ,μ), and we cannot expect Propositions 2.2 and 2.3 to be true in

a heterogeneous medium because of mode conversion between pressure and shear waves.

Proposition 2.2 For all x,z ∈ Ω, we have

∫
∂Ω

[
∂ĜS

ω(x,y)

∂ν
ĜP
ω(y,z) − ĜS

ω(x,y)
∂ĜP

ω(y,z)

∂ν

]
dσ(y) = 0. (2.23)
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Proof First, we recall that ĜP
ω(y,x) and ĜS

ω(y,x) are solutions of (2.17). We proceed as

in the proof of Proposition 2.1 to find:∫
∂Ω

[
∂ĜS

ω(x,y)

∂ν
ĜP
ω(y,z) − ĜS

ω(x,y)
∂ĜP

ω(y,z)

∂ν

]
dσ(y)

=

∫
Ω

[
HS [−δxI](y)ĜP

ω(y,z) − ĜS
ω(x,y)HP [−δzI](y)

]
dy

=
[
HS [−δ0I] ∗ ĜP

ω(·,z)
]
(x) −
[
ĜS
ω(x, ·) ∗ HP [−δ0I]

]
(z).

Using the fact that ĜP
ω = HP [Ĝω] and HSHP = HPHS = 0, we get

HS
[
HS [−δ0I] ∗ ĜP

ω(·,z)
]

= 0 and HP
[
HS [−δ0I] ∗ ĜP

ω(·,z)
]

= 0.

Therefore, we conclude [
HS [−δ0I] ∗ ĜP

ω(·,z)
]
(x) = 0.

Similarly, we have [
ĜS
ω(x, ·) ∗ HP [−δ0I]

]
(z) = 0,

which gives the desired result. �

Finally, the following proposition shows that the elastodynamic reciprocity theorem

(Proposition 2.1) holds for each wave component. As it has been said before, Proposition

2.3 holds only in a homogeneous isotropic medium.

Proposition 2.3 For all x,z ∈ �d and α = P , S ,∫
∂Ω

[
∂Ĝα

ω(x,y)

∂ν(y)
Ĝα
ω(y,z) − Ĝα

ω(x,y)
∂Ĝα

ω(y,z)

∂ν(y)

]
dσ(y) = 2i�m{Ĝα

ω(x,z)}. (2.24)

Proof As both cases, α = P and α = S , are similar, we only provide a proof for α = P .

For α = P , indeed, we have∫
∂Ω

[
∂ĜP

ω(x,y)

∂ν
ĜP
ω(y,z) − ĜP

ω(x,y)
∂ĜP

ω(y,z)

∂ν

]
dσ(y)

=
[
HP [−δ0I] ∗ ĜP

ω(·,z)
]
(x) −
[
ĜP
ω(x, ·) ∗ HP [−δ0I]

]
(z).

Using the fact that ĜP
ω(y,z) = ĜP

ω,0(y − z) = ĜP
ω,0(z − y), we can write

[
HP [−δ0I] ∗ ĜP

ω(·,z)
]
(x) =
[
HP [−δ0I] ∗ ĜP

ω,0(·)
]
(x − z),

and[
ĜP
ω(x, ·) ∗ HP [−δ0I]

]
(z) =
[
ĜP
ω,0(·) ∗ HP [−δ0I]

]
(z − x) =

[
HP [−δ0I] ∗ ĜP

ω,0(·)]
]
(x − z).
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Therefore,

∫
∂Ω

[
∂ĜP

ω(x,y)

∂ν
ĜP
ω(y,z) − ĜP

ω(x,y)
∂ĜP

ω(y,z)

∂ν

]
dσ(y)

= HP
[
2i�m{ĜP

ω(x,z)}
]

= 2i�m{ĜP
ω(x,z)},

where the last equality results from the fact that HSHP = 0. �

2.1.3 Approximation of the conormal derivative

In this section we derive an approximation of the conormal derivative (∂Ĝω/∂ν)(x,y),

y ∈ ∂Ω, x ∈ Ω. In general, this approximation involves the angles between the pressure

and shear rays and the normal on ∂Ω. This approximation becomes simple when Ω is a

ball with very large radius, since in this case all rays are normal to ∂Ω (Proposition 2.4).

It allows us to use a simplified version of the Helmholtz–Kirchhoff identity to analyse the

imaging functional Ĩ when Ω is a ball with large radius (Proposition 2.5).

Proposition 2.4 If n(y) = 1y − x and |x − y| 
 1, then, for α = P , S ,

∂Ĝα
ω(x,y)

∂ν(y)
= iωcαĜ

α
ω(x,y) + o

(
1

|x − y|(d−1)/2

)
. (2.25)

Proof Here we only prove the proposition for d = 3. The case d = 2 follows from exactly

the same arguments. Moreover, it is enough to show that for all constant vectors q,

∂ĜP
ω(x,y)q

∂ν(y)
= iωcP ĜP

ω(x,y)q + o

(
1

|x − y|

)
and

∂ĜS
ω(x,y)q

∂ν(y)
= iωcSĜ

S
ω(x,y)q + o

(
1

|x − y|

)
.

Pressure component: Recall that

ĜP
ω(x,y) = − 1

ω2
DĜPω(x,y) =

1

c2P
ĜPω(x,y)1y − x ⊗ 1y − x + o

(
1

|x − y|

)
,

with ĜPω(x,y) = ĜPω,0(x − y) and ĜPω,0 given by (2.12), so we have

ĜP
ω(x,y)q =

1

c2P
ĜPω(x,y) (1y − x · q) 1y − x + o

(
1

|x − y|

)
.
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Therefore,

∂ĜP
ω(x,y)q

∂ν(y)
= λ∇y ·

(
ĜP
ω(x,y)q

)
n(y) + μ

[
∇y(ĜP

ω(x,y)q)T + (∇y(ĜP
ω(x,y)q)T )T

]
n(y)

=
1y − x · q

c3P
iωĜPω(x,y)

[
λ 1y − x · 1y − xn+2μ(1y − x ⊗ 1y − x)n

]
+o

(
1

|y − x|

)
=
1y − x · q

c3P
iωĜPω(x,y)

[
λn + 2μ(1y − x · n)1y − x

]
+ o

(
1

|y − x|

)
=
1y − x · q

c3P
iωĜPω(x,y)

[
λ
(
n − 1y − x

)
+ 2μ
(
1y − x · n − 1

)
1y − x
]

+ iωcP ĜP
ω(x,y)q + o

(
1

|y − x|

)
.

In particular, when n(y) = 1y − x, we have

∂ĜP
ω(x,y)q

∂ν(y)
= iωcP ĜP

ω(x,y)q + o

(
1

|y − x|

)
.

Shear components: As

ĜS
ω(x,y) =

1

ω2

(
κ2
S I + D

)
ĜSω(x,y) =

1

c2S
ĜSω(x,y)

(
I − 1y − x ⊗ 1y − x

)
+ o

(
1

|x − y|

)
,

we have

ĜS
ω(x,y)q =

1

c2S
ĜSω(x,y)

(
q −
(
1y − x · q

)
1y − x
)

+ o

(
1

|x − y|

)
.

The conormal derivative is

∂ĜS
ω(x,y)q

∂ν(y)
= λ∇y ·

(
ĜS
ω(x,y)q

)
n(y) + μ

[
∇y(ĜS

ω(x,y)q)T + (∇y(ĜS
ω(x,y)q)T )T

]
n(y).

Now, remark that

λ∇.
(
ĜS
ω(x,y)q

)
n(y) = λ

iω

c3S
ĜSω(x,y)

[(
q −
(
1y − x · q

)
1y − x
)

· 1y − x
]
n + o

(
1

|x − y|

)
= o

(
1

|x − y|

)
,
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and

μ
[
∇(ĜS

ω(x,y)q)T + (∇(ĜS
ω(x,y)q)T )T

]
n

= μ
iω

c3S
ĜSω(x,y)

[
q ⊗ 1y − x + 1y − x ⊗ q − 2

(
1y − x · q

)
1y − x ⊗ 1y − x

]
n + o

(
1

|x − y|

)
= μ

iω

c3S
ĜSω(x,y)

[(
1y − x · n

)
q +
(
q · n
)
1y − x − 2

(
1y − x · q

)(
1y − x · n

)
1y − x
]

+ o

(
1

|x − y|

)
= μ

iω

c3S
ĜSω(x,y)

[(
1y − x · n

)
− 1
] [

q −
(
1y − x · q

)
1y − x
]

+ μ
iω

c3S
ĜSω(x,y)

[(
q · n −

(
1y − x · q

)(
1y − x · n

))
1y − x
]
+ iωcSĜ

S
ω(x,y)q

+ o

(
1

|x − y|

)
.

In particular, when n(y) = 1y − x, we have

∂ĜS
ω(x,y)q

∂ν(y)
= iωcSĜ

S
ω(x,y)q + o

(
1

|y − x|

)
.

�

The following is a direct consequence of Propositions 2.2, 2.3 and 2.4.

Proposition 2.5 Let Ω ⊂ �d be a ball with large radius R. Then, for all x,z ∈ �d, we have

lim
R→+∞

∫
∂Ω

Ĝα
ω(x,y)Ĝα

ω(y,z)dσ(y) =
1

ωcα
�m{Ĝα

ω(x,z)}, α = P , S, (2.26)

lim
R→+∞

∫
∂Ω

ĜS
ω(x,y)ĜP

ω(y,z)dσ(y) = 0. (2.27)

2.1.4 Analysis of the imaging functional Ĩ

In this section, we assume that Ω is a ball of radius R in �d and that the support,

supp {F }, of F is sufficiently localized at the centre of Ω so that for all x ∈ supp {F } and

for all y ∈ ∂Ω

1y − x = n(y) + o

(
1

|y − x|(d−1)/2

)
.

Then we have the following theorem.

Theorem 2.6 Let x ∈ Ω be sufficiently far from the boundary ∂Ω (with respect to

wavelengths) and Ĩ be defined by (2.7). Then,

Ĩ(x) � F (x). (2.28)
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Proof From (2.19) we have

Ĩ(x) =
1

4π

∫
�d

∫
�
ω2

[∫
∂Ω

e

Ĝω(x,y)Ĝω(y,z) +
e

Ĝω(x,y)Ĝω(y,z) dσ(y)

]
dωF (z) dz,

where

e

Ĝω(x,y) = cSĜ
S
ω(x,y) + cP ĜP

ω(x,y).

Proposition 2.5 allows us to write

Ĩ(x) � 1

4π

∫
�d

∫
�
ω2

[∫
∂Ω

e

Ĝω(x,y)Ĝω(y,z) + Ĝω(x,y)
e

Ĝω(y,z) dσ(y)

]
dωF (z) dz

� 1

4π

∫
�d

∫
�
ω2

[∫
∂Ω

e

Ĝω(x,y)Ĝω(y,z) + Ĝω(x,y)
e

Ĝω(y,z) dσ(y)

]
dωF (z) dz.

Propositions 2.4 and 2.1 then give

Ĩ(x) � 1

4π

∫
�d

∫
�

−iω
[

∂Ĝω(x,y)

∂ν
Ĝω(y,z) − Ĝω(x,y)

∂Ĝω(y,z)

∂ν

]
dωF (z) dz

� 1

2π

∫
�d

∫
�
ω�m
[
Ĝω(x,z)

]
dωF (z) dz = F (x).

The last equality results from the identity

1

2π

∫
�

−iωĜω(x,z)dω = δx(z)I,

which comes from the integration of the time-dependent version of (2.10) between t = 0−

and t = 0+. �

Remark 2.7 If the unweighted time-reversal imaging functional I is used instead of Ĩ,

then crossed terms remain. Using the same arguments as above, we find

I(x) � cS + cP

cScP

1

4π

∫
�d

∫
�
ω�m
[
(ĜP

ω + ĜS
ω)(x,z)

]
dωF (z) dz

+
cS − cP

cScP

1

4π

∫
�d

∫
�
ω�m
[
(ĜP

ω − ĜS
ω)(x,z)

]
dωF (z) dz

� cS + cP

2cScP
F (x) +

cS − cP

2cScP

∫
�d

B(x,z)F (z)dz, (2.29)

where

B(x,z) =
1

2π

∫
�
ω�m
[
(ĜP

ω − ĜS
ω)(x,z)

]
dω (2.30)

is the operator that describes the error in the reconstruction of the source F obtained

with I when cS � cP . In particular, the operator B is not diagonal, which means that the

reconstruction mixes the components of F .
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2.2 Numerical simulations

In this section we present numerical illustrations and describe our algorithms for numerical

resolution of the source problem to show that eI provides a better reconstruction than I.

2.2.1 Description of the algorithm

Let us describe the algorithm we used for the numerical resolution of the elastic wave

equation in 2D:⎧⎪⎨⎪⎩
∂2u

∂t2
(x, t) = [μΔu + (λ+ μ)∇(∇ · u)] (x, t), (x, t) ∈ �2 × �,

u(x, 0) = F (x) and
∂u

∂t
(x, 0) = 0.

(2.31)

This equation is computed in the box Q = [−L/2, L/2]2 such that Ω ⊂ Q with periodic

boundary conditions. We use a splitting spectral Fourier approach [18] coupled with a

perfectly matched layer (PML) technique (see, for instance, [21, 31 and the references

therein]) to simulate a free outgoing interface on ∂Q. The PML technique is implemented

by adding a penalization term q∂tu to the elastic wave equation in Q. The penalization

coefficient q is supported in a neighbourhood of the boundary ∂Q. Moreover, it is a

smooth positive function of the distance to ∂Q and grows exponentially. To solve the

equation ∂2
tu − Lλ,μu + q∂tu = 0 in Q with periodic boundary conditions, we use a

splitting spectral Fourier approach. We first solve the equation ∂2
tu − Lλ,μu = 0 in the

spatial Fourier domain and then treat the ordinary differential equation ∂2
tu + q∂tu = 0

in the spatial domain.

In order to solve the elastic wave equation, ∂2
tu − Lλ,μu = 0 in the spatial Fourier

domain, we note that it can be rewritten as a first-order partial differential equation:

∂tP = AP + BP ,

where, with the notation u = (u1, u2) and x = (x1, x2),

P =

⎛⎜⎜⎝
u1

∂tu1

u2

∂tu2

⎞⎟⎟⎠ , A =

⎛⎜⎜⎜⎜⎝
0 1 0 0

(λ+ 2μ)∂2
x1

+ μ∂2
x2

0 0 0

0 0 0 1

0 0 (λ+ 2μ)∂2
x2

+ μ∂2
x1

0

⎞⎟⎟⎟⎟⎠
and

B =

⎛⎜⎜⎜⎜⎝
0 0 0 0

0 0 (λ+ μ)∂x1
∂x2

0

0 0 0 0

(λ+ μ)∂x1
∂x2

0 0 0

⎞⎟⎟⎟⎟⎠ .
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This equation is integrated via Strang’s splitting method [44]. This splitting approach is

known to be of order two and reads,

exp((A + B)t) = exp(Bt/2) exp(At) exp(Bt/2) + o(t2).

The operator exp(At) is computed exactly in the spatial Fourier space. Indeed, the Fourier

transform

P̂A(ξ, t) =

∫
PA(x, t)e

iξ·xdx

of PA(x, t) = exp(At)P (x) is given explicitly by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

buA,1(ξ, t) = cos
(√

ξ2
λ,μ,1t
)
bu1(ξ) + t sinc

(√
ξ2
λ,μ,1t
)

∂̂tu1(ξ),̂∂tuA,1(ξ, t) = cos
(√

ξ2
λ,μ,1t
)

∂̂tu1(ξ) −
√
ξ2
λ,μ,1 sin

(√
ξ2
λ,μ,1t
)
bu1(ξ),

buA,2(ξ, t) = cos
(√

ξ2
λ,μ,2t
)
bu2(ξ) + t sinc

(√
ξ2
λ,μ,2t
)

∂̂tu2(ξ),̂∂tuA,2(ξ, t) = cos
(√

ξ2
λ,μ,2t
)

∂̂tu2(ξ) −
√
ξ2
λ,μ,2 sin

(√
ξ2
λ,μ,2t
)
bu2(ξ),

with

ξ2
λ,μ,1 = (λ+ 2μ)ξ2

1 + μξ2
2 , ξ2

λ,μ,2 = (λ+ 2μ)ξ2
2 + μξ2

1 , and sinc(t) = sin(t)/t.

The second operator exp(Bt) can also be integrated exactly, and the spatial Fourier

transform of

PB(x, t) = exp(Bt)P (x)

is given explicitly by ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
buB,1(ξ, t) = bu1(ξ),̂∂tuB,1(ξ, t) = ∂̂tu1(ξ) + tξλ,μ,3bu2(ξ),

buB,2(ξ, t) = bu2(ξ),̂∂tuB,2(ξ, t) = ∂̂tu2(ξ) + tξλ,μ,3bu1(ξ),

with

ξλ,μ,3 = (λ+ μ)ξ1ξ2.

This global algorithm appears to be stable under a classical condition of the form

δt � c(λ, μ)δ2
x,

where δt and δx denote, respectively, the time and the spatial step of discretization. Here

c(λ, μ) is a constant which depends only on the Lamé coefficients λ and μ.

The functional Ĩ(x) also requires a Helmholtz decomposition algorithm. As the support

of the functional Ĩ(x) is included in Ω ⊂ Q, we use a homogeneous Neumann boundary

condition on ∂Q. This decomposition is numerically obtained with a fast algorithm based

on a symmetry principle and a Fourier–Helmholtz decomposition algorithm [50].
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2.2.2 Experiments

In the sequel, for numerical illustrations, Ω is taken as a unit disc. Its boundary is

discretized by 1,024 sensors. Each solution of elastic wave equation is computed over

(x, t) ∈ [−L/2, L/2]2 × [0, T ] with L = 4 and T = 2. The discretization steps are

dt = T/213 and dx = L/29.

Figure 1 presents the first experiment with Lamé parameters (λ, μ) = (1, 1). The first

(top) line corresponds to the two components of the initial source F . The second line

corresponds to the data g(y, t) = u(y, t) recorded over (y, t) ∈ ∂Ω × [0, T ]. Note that

the shear and pressure waves are mixed in the recorded signal and it seems difficult to

separate them. The third line corresponds to the imaging functional I(x). This example

clearly shows that the reconstruction of the source F is not so accurate with classical

time-reversal imaging. Moreover, in the last row, the plots represent the modified imaging

functional Ĩ(x) where the reconstruction is clearly better.

Figure 2 shows another example with different Lamé parameters (λ, μ) = (10, 1). The

same conclusion holds.

In Figure 3, we use a ‘less localized’ (large) source distribution. We observe some

artifacts in the reconstruction of the imaging functional Ĩ. We can also observe, from the

recorded data, that the pressure and shear waves are very much coupled with each other.

The artifacts in the reconstruction are the consequence of such coupling. In this situation,

we do not have a normal incidence of the waves on ∂Ω.

To conclude, Ĩ provides a better reconstruction of the sources than I. However, in

certain cases, the reconstructions by Ĩ are not optimal, and need further improvements.

Several other challenging problems remain. It would be very interesting to extend the

strategy developed in [3] to correct the effect of partial measurements in the elastic case.

Another important problem is to correct the effect of random fluctuations in the elastic

parameters. It is known that time-reversal techniques yield blurry images in such a case.

Coherent interferometric techniques [14,15] may lead to better imaging in the elastic case

as well.

3 Time-reversal algorithm for viscoelastic media

In this section we investigate the source inverse problem in an elastic attenuating medium.

We provide an efficient regularized time-reversal imaging algorithm that corrects for the

leading-order terms of the attenuation effect. Consider the viscoelastic wave equation in

�d with d = 2, 3:⎧⎪⎨⎪⎩
∂2ua

∂t2
(x, t) − Lλ,μua(x, t) − ∂

∂t
Lηλ,ημua(x, t) =

dδ0(t)

dt
F (x), (x, t) ∈ �d × �,

ua(x, t) =
∂ua

∂t
(x, t) = 0, t < 0,

(3.1)

where the viscosity parameters ημ and ηλ are positive constants and account for losses in

the medium. Let ga(x, t) := ua(x, t),x ∈ ∂Ω, t ∈ [0, T ]. Again, the inverse problem is to

reconstruct F (x),x ∈ Ω from ga(x, t),x ∈ ∂Ω, t ∈ [0, T ]. For solving the problem, we use

a time-reversal approach.
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Figure 1. (Colour online) Source reconstruction. Comparison between the imaging functionals I
and Ĩ with Lamé constants (λ, μ) = (1, 1). From top to bottom: First line: the source F ; second

line: recorded data g(y, t); third line: imaging functional I; last line: imaging functional Ĩ.
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Figure 2. (Colour online) Source reconstruction. Comparison between the imaging functionals I
and Ĩ with Lamé constants (λ, μ) = (10, 1). First line: source F ; second line: recorded data g(y, t);
third line: imaging functional I; last line: imaging functional Ĩ.
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Figure 3. (Colour online) Source reconstruction. Comparison between the imaging functionals I
and Ĩ with Lamé constants (λ, μ) = (1, 1) and less localized source than in Figure 1. First line:

source F ; second line: recorded data g(y, t); third line: imaging functional I; last line: imaging

functional Ĩ.
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Before doing so, it is worth mentioning that there are several other models for atten-

uation. Empirically, attenuation in viscoelastic media obeys a frequency power law-type

attenuation, whereas thermo-viscous model considered here is a special case. In this re-

gard, we refer to [17, 38, 45 and references therein]. As the present work is motivated by

biomedical imaging techniques, and the thermo-viscous model (also known as the Kelvin–

Voigt model) is well justified in modelling viscoelastic behaviour of a large class of elastic

materials, including soft tissues [20], we therefore concentrate on thermo-viscous model.

In the acoustic case in [5, 7], the acoustic counterpart of the present inverse problem

where generalized type of power-law attenuation is dealt with. The analysis therein is

presented first for thermo-visous model and then a simple procedure is devised to extend

the analysis therein to general power-law models using an argument of fractional Lapla-

cian and dominated convergence theorem of Lebesgue. Here a very similar remark holds,

since a viscoelastic wave can be converted to two acoustic-type waves using Helmholtz

decompositions, and the results presented in this paper can be extended easily to gen-

eral viscoelastic models. For acoustic power-law attenuation models and reconstruction

algorithms, see [33].

We now turn to time reversal in viscoelastic media. As in the acoustic case [5], the

strategy of time reversal is to consider the functional

Ia(x) =

∫ T

0

vs,a(x, T )ds, (3.2)

where vs,a should be the solution of the adjoint (time-reversed) viscoelastic wave equation,

i.e.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2vs,a

∂t2
(x, t) − Lλ,μvs,a(x, t)

+
∂

∂t
Lηλ,ημvs,a(x, t) =

dδs(t)

dt
ga(x, T − s)δ∂Ω(x), (x, t) ∈ �d × �,

vs,a(x, t) =
∂vs,a

∂t
(x, t) = 0 x ∈ �d, t < s.

(3.3)

Further, the idea is to enhance image resolution using Ĩa, as in purely elastic media,

where

Ĩa = cSHS [Ia] + cPHP [Ia] .

Unfortunately, the adjoint viscoelastic problem is severely ill-posed. Indeed, the high-

frequency components are exponentially increasing due to the presence of the anti-damping

term (
+∂tLηλ,ημvs,a

)
,

which induces instability. Therefore, we need to regularize the adjoint problem by trun-

cating high-frequency components either in time or in space.
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For y ∈ �d let us introduce the time-dependent Green tensor Ga associated to the

viscoelastic wave equation which is the solution to⎧⎪⎨⎪⎩
∂2Ga

∂t2
(x,y, t) − Lλ,μGa(x,y, t) − ∂

∂t
Lηλ,ημGa(x,y, t) =

dδ0(t)

dt
δy(x), (x, t) ∈ �d × �,

Ga(x,y, t) =
∂Ga

∂t
(x,y, t) = 0, t < 0.

(3.4)

We denote by Ĝa,ω its temporal Fourier transform. It is the outgoing time-harmonic

Green tensor solution of

(Lλ,μ − iωLηλ,ημ + ω2)Ĝa,ω(x,y) = −δy(x)I, x,y ∈ �d. (3.5)

We also introduce the adjoint viscoelastic Green tensor Ĝ−a,ω . It is the solution to

(Lλ,μ + iωLηλ,ημ + ω2)Ĝ−a,ω(x,y) = −δy(x)I, x,y ∈ �d. (3.6)

We introduce an approximation vs,a,ρ of the adjoint wave vs,a by

vs,a,ρ(x, t) = − 1

2π

∫
|ω|�ρ

{∫
∂Ω

iωĜ−a,ω(x,y)ga(y, T − s)dσ(y)

}
exp (−iω(t− s)) dω, (3.7)

where ρ ∈ �+ is the cut-off parameter. The regularized time-reversal imaging functional

defined by

Ia,ρ(x) =

∫ T

0

vs,a,ρ(x, T )ds (3.8)

can be written as

Ia,ρ(x) = −
∫

∂Ω

∫ T

0

∂

∂s

[
G−a,ρ(x,y, T − s)

]
ga(y, T − s)ds dσ(y), (3.9)

where

G−a,ρ(x,y, t) =
1

2π

∫
|ω|�ρ

Ĝ−a,ω(x,y) exp (−iωt) dω. (3.10)

Remark 3.1 Let S′ be the space of tempered distributions, i.e. the dual of the Schwartz

space S of rapidly decreasing functions [32]. The function vs,a,ρ(x, t) can be identified as

the solution of the following wave equation:

∂2vs,a,ρ
∂t2

(x, t) − Lλ,μvs,a,ρ(x, t) +
∂

∂t
Lηλ,ημvs,a,ρ(x, t) = Sρ

[
dδs(t)

dt

]
ga(x, T − s)δ∂Ω(x),

(3.11)

where the operator Sρ is defined on the space S′ by

Sρ [ψ] (t) =
1

2π

∫
|ω|�ρ

exp (−iωt) ψ̂(ω)dω, (3.12)
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with

ψ̂(ω) =

∫
�
ψ(t) exp(iωt) dt. (3.13)

3.1 Green’s tensor in viscoelastic media

As in Section 2, we decompose Ĝ±a,ω in the form

Ĝ±a,ω = ĜS
±a,ω + ĜP

±a,ω, (3.14)

where ĜS
±a,ω and ĜP

±a,ω are, respectively, the fundamental solutions of

(Lλ,μ ∓ iωLηλ,ημ + ω2)Ĝα
±a,ω(x,y) = Hα

[
−δyI
]
(x), α = P , S. (3.15)

Let us also introduce the decomposition of the operator Lλ,μ into shear and pressure

components as

Lλ,μ = LS
λ,μ + LP

λ,μ, and Lηλ,ημ = LS
ηλ,ημ

+ LP
ηλ,ημ

, (3.16)

where

LS
λ,μu = c2S [Δu − ∇(∇ · u)] and LP

λ,μu = c2P∇(∇ · u), (3.17)

and

LS
ηλ,ημ

u = c2S εS [Δu − ∇(∇ · u)] and LP
ηλ,ημ

u = c2P εP∇(∇ · u). (3.18)

Here we have defined

εS =
ημ

μ
and εP =

ηλ + 2ημ
λ+ 2μ

. (3.19)

Therefore, the tensors ĜS
±a,ω and ĜP

±a,ω are also solutions of(
Lα

λ,μ ∓ iωLα
ηλ,ημ

+ ω2
)
Ĝα

±a,ω(x,y) = Hα
[

− δyI
]
(x), α = P , S. (3.20)

The corrected regularized time-reversal imaging functional defined by

Ĩa,ρ = cSHS
[
Ia,ρ

]
+ cPHP

[
Ia,ρ

]
(3.21)

is then given by

Ĩa,ρ(x) = −
∫

∂Ω

∫ T

0

∂

∂s

[
cPGP

−a,ρ(x,y, T − s) + cSG
S
−a,ρ(x,y, T − s)

]
ga(y, T − s)ds dσ(y),

(3.22)

where

Gα
−a,ρ(x,y, t) =

1

2π

∫
|ω|�ρ

Ĝα
−a,ω(x,y) exp (−iωt) dω, α = P , S. (3.23)

In the next section we express the relationship between the data ga and the ideal

measurements g obtained in the non-attenuated case. By doing so we prove with the help

of a new version of the Helmholtz–Kirchhoff identity that a regularized image of the

source F can be obtained.
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3.2 Attenuation operator and its asymptotics

Recall that u and ua are, respectively, the solutions of the wave equations

∂2u

∂t2
(x, t) − Lλ,μu(x, t) =

dδ0(t)

dt
F (x), (3.24)

and

∂2ua

∂t2
(x, t) − Lλ,μua(x, t) − ∂

∂t
Lηλ,ημua(x, t) =

dδ0(t)

dt
F (x), (3.25)

with the initial conditions

u(x, t) = ua(x, t) =
∂u

∂t
(x, t) =

∂ua

∂t
(x, t) = 0, t < 0. (3.26)

We decompose u and ua as

u = uS + uP = HS [u] + HP [u] and ua = uS
a + uP

a = HS [ua] + HP [ua]. (3.27)

The temporal Fourier transforms ûα
ω and ûα

a,ω of the vector functions uα and uα
a are,

respectively, solutions of

(
ω2 + Lα

λ,μ

)
ûα
ω = iωHα [F ] and

(
κεα(ω)2 + Lα

λ,μ

)
ûα
a,ω = i

κεα(ω)2

ω
Hα [F ] , α = P , S,

(3.28)

where

κε(ω) =
ω√

1 − iωε
. (3.29)

In particular, it implies that

uS
a = AεS

[
uS
]

and uP
a = AεP

[
uP
]
, (3.30)

where Aε, for ε > 0, is the attenuation operator

Aε [φ] (t) =
1

2π

∫
�

κε(ω)

ω

{∫
�+

φ(s) exp{iκε(ω)s}ds
}

exp{−iωt}dω, t > 0. (3.31)

We also define the operator A−ε,ρ by

A−ε,ρ [φ] (t) =
1

2π

∫
�+

φ(s)

{∫
|ω|�ρ

κ−ε(ω)

ω
exp{iκ−ε(ω)s} exp{−iωt}dω

}
ds, (3.32)

which is associated with κ−ε(ω) =
ω√

1 + iωε
. Moreover, its adjoint operator A∗

−ε,ρ reads

A∗
−ε,ρ [φ] (t) =

1

2π

∫
|ω|�ρ

κ−ε(ω)

ω
exp{iκ−ε(ω)t}

{∫
�+

φ(s) exp{−iωs}ds
}
dω. (3.33)

We extend the operators Aε, A−ε,ρ and A∗
−ε,ρ to tensors G, i.e. for all vectors p ∈ �d,

Aε[Gp] = Aε[G]p, A−ε,ρ[Gp] = A−ε,ρ[G]p and A∗
−ε,ρ[Gp] = A∗

−ε,ρ[G]p.
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By the definition of the operators Aε and A−ε,ρ, we have for α = P , S:

∂Gα
a

∂t
(x,y, t) = Aεα

[
∂Gα

∂t
(x,y, ·)

]
(t), (3.34)

∂Gα
−a,ρ

∂t
(x,y, t) = A−εα,ρ

[
∂Gα

∂t
(x,y, ·)

]
(t). (3.35)

It is worth emphasizing that identities (3.34) and (3.35) are exact. They are particular

cases of (3.30) with F (x) = δy(x)I. They still hold for other attenuation models as shown

in [33].

We need the following results from [5, 7].

Proposition 3.2

• Let φ(t) ∈ S ([0,∞)), S being the Schwartz space. Then

Aε [φ] (t) = φ(t) +
ε

2

(
tφ′)′ (t) + o(ε) as ε → 0. (3.36)

• Let φ(t) ∈ D ([0,∞)), where D ([0,∞)) is the space of C∞-functions of compact support

on [0,∞). Then, for all ρ > 0,

A∗
−ε,ρ [φ] (t) = Sρ[φ](t) − ε

2
Sρ[
(
tφ′)′](t) + o(ε) as ε → 0, (3.37)

where Sρ is defined by (3.12).

• Let φ(t) ∈ D ([0,∞)). Then, for all ρ > 0,

A∗
−ε,ρAε [φ] (t) = Sρ [φ] (t) + o(ε) as ε → 0. (3.38)

Recall that g = u and ga = ua on ∂Ω × [0, T ]. It then follows from (3.30) that, for

α = P , S, and εα → 0,

A∗
−εα,ρAεα

[
gαa
]

= Sρ [gα] + o(εα), (3.39)

where

gαa = Hα[ga], gα = Hα[g]. (3.40)

Identity (3.39) proves that A∗
−εα,ρ is an approximate inverse of Aεα . Moreover, it plays

a key role in showing that the regularized time-reversal algorithm provides a first-order

correction of the attenuation effect.
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3.3 Helmholtz–Kirchhoff identity in attenuating media

In this section we derive a new Helmholtz–Kirchhoff identity in elastic attenuating media.

For doing so, let us introduce the conormal derivatives ∂u/∂νa and ∂u/∂ν−a as follows:

∂u

∂ν±a
:=
(
λ(∇ · u)n + μ(∇uT + (∇uT )T )n

)
∓ iω
(
ηλ(∇ · u)n + ημ(∇uT + (∇uT )T )n

)
.

(3.41)

Note also that for a tensor G the conormal derivative ∂G
∂ν±a

means that for all constant

vectors p, [
∂G

∂ν±a

]
p :=

∂ [Gp]

∂ν±a
. (3.42)

The following properties hold.

Proposition 3.3 For all x,z ∈ Ω, we have

∫
∂Ω

⎡⎣∂ĜS
−a,ω(x,y)

∂ν−a
ĜP
a,ω(y,z) − ĜS

−a,ω(x,y)
∂ĜP

a,ω(y,z)

∂νa

⎤⎦ dσ(y) = 0. (3.43)

Proof For x,z ∈ Ω,

J(x,z) :=

∫
∂Ω

⎡⎣∂ĜS
−a,ω(x,y)

∂ν−a
ĜP
a,ω(y,z) − ĜS

−a,ω(x,y)
∂ĜP

a,ω(y,z)

∂νa

⎤⎦ dσ(y)

=

∫
∂Ω

⎡⎣∂ĜS
−a,ω(x,y)

∂ν−a
ĜP
a,ω(y,z) − ĜS

−a,ω(x,y)
∂ĜP

a,ω(y,z)

∂ν−a

⎤⎦ dσ(y)

=

∫
Ω

[
Lλ,μĜ

S
−a,ω(x,y) + iωLηλ,ημĜ

S
−a,ω(x,y)

]
ĜP
a,ω(y,z) dy

−
∫
Ω

ĜS
−a,ω(x,y)

[
Lλ,μĜP

a,ω(y,z) + iωLηλ,ημĜ
P
a,ω(y,z)

]
dy,

=

∫
Ω

[
Lλ,μĜ

S
−a,ω(x,y) + iωLηλ,ημĜ

S
−a,ω(x,y)

]
ĜP
a,ω(y,z) dy

−
∫
Ω

ĜS
−a,ω(x,y)

[
Lλ,μĜP

a,ω(y,z) − iωLηλ,ημĜ
P
a,ω(y,z)

]
dy.

Since ĜP
a,ω(x,y) and ĜS

−a,ω(x,y) are solutions of (3.15) with α = P , S, respectively, it

follows that

J(x,z) =
[
HS [−δ0I] ∗ ĜP

a,ω(·,z)
]
(x) −
[
ĜS

−a,ω(x, ·) ∗ HP [−δ0I]
]
(z).

As in the proof of Proposition 2.2, one can show that[
HS [−δ0I] ∗ ĜP

a,ω(·,z)
]
(x) = 0 and

[
ĜS

−a,ω(x, ·) ∗ HP [−δ0I]
]
(z) = 0,

which completes the proof of the proposition. �
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We now give an approximation of the viscoelastic conormal derivative, which holds

only for homogeneous isotropic elastic media.

Proposition 3.4 If n = 1y − x, then for α = P , S , we have

∂Ĝα
±a,ω(x,y)

∂ν±a
� icαω

2

κ±εα (ω)
Ĝα

±a,ω(x,y), (3.44)

where

κ±ε(ω) =
ω√

1 ∓ iωε
. (3.45)

Proof Indeed, note that (see Appendix)

Ĝα
±a,ω(x,y) =

[
κ±εα(ω)

ω

]2
Ĝα
κ±εα (ω)(x,y), α = P , S. (3.46)

Then, from Proposition 2.4, we obtain

∂Ĝα
±a,ω(x,y)

∂ν±a

�
[
κ±εα (ω)

ω

]2((
ic2α
κ±εα (ω)

cα
Ĝα
κα∓(ω)(x,y)

)
∓ iω
(
ic2αεα

κ±εα(ω)

cα
Ĝα
κ±εα (ω)(x,y)

))
�
[
icακ±εα (ω) (1 ∓ iωεα)

]
Ĝα

±a,ω(x,y) � icαω
2

κ±εα (ω)
Ĝα

±a,ω(x,y),

which completes the proof. �

In particular, the following estimate holds as a direct consequence of Propositions 3.3

and 3.4.

Proposition 3.5 Let Ω ⊂ �d be a ball with large radius R. Then for all x,z ∈ Ω sufficiently

far (with respect to wavelengths) from boundary ∂Ω, we have∫
∂Ω

ĜS
−a,ω(x,y)ĜP

a,ω(y,z)dσ(y) �
∫

∂Ω

ĜP
−a,ω(x,y)ĜS

a,ω(y,z)dσ(y) � 0. (3.47)

3.4 Analysis of the regularized time-reversal imaging algorithm

The aim of this section is to justify that, in a homogeneous isotropic elastic medium, the

regularized time-reversal imaging functional Ĩa,ρ provides a correction of the attenuation

effect.
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Theorem 3.6 The regularized time-reversal imaging functional Ĩa,ρ satisfies

Ĩa,ρ(x) = Ĩρ(x) + o (εS + εP ) , (3.48)

Ĩρ(x) :=

∫
∂Ω

∫ T

0

[
cS

∂

∂s
GS (x,y, s) + cP

∂

∂s
GP (x,y, s)

]
Sρ [g(y, ·)] (s)ds dσ(y), (3.49)

where Sρ is defined by (3.12).

Proof We can decompose the functional Ĩa,ρ as follows:

Ĩa,ρ(x) = −
∫

∂Ω

∫ T

0

∂

∂s

[
cPGP

−a,ρ(x,y, T − s) + cSG
S
−a,ρ(x,y, T − s)

]
ga(y, T − s)ds dσ(y)

=

∫
∂Ω

∫ T

0

∂

∂s

[
cPGP

−a,ρ(x,y, s) + cSG
S
−a,ρ(x,y, s)

] [
gSa (y, s) + gPa (y, s)

]
ds dσ(y)

= ISS
a,ρ(x) + ISP

a,ρ (x) + IPS
a,ρ (x) + IPP

a,ρ (x),

where

Iαβ
a,ρ(x) =

∫
∂Ω

∫ T

0

∂

∂s

[
cαG

α
−a,ρ(x,y, s)

]
gβa (y, s)ds dσ(y), α, β ∈ {P , S}.

Similarly, we can decompose the functional Ĩρ as

Ĩρ(x) = ISS
ρ (x) + ISP

ρ (x) + IPS
ρ (x) + IPP

ρ (x),

with

Iαβ
ρ (x) =

∫
∂Ω

∫ T

0

∂

∂s
[cαG

α(x,y, s)] Sρ[g
β(y, ·)](s)ds dσ(y), α, β ∈ {P , S}.

The first term ISS
a,ρ(x) satisfies

ISS
a,ρ(x) =

∫
∂Ω

∫ T

0

A−εS ,ρ

[
∂

∂s

[
cSG

S (x,y, ·)
]]

(s)AεS

[
gS (y, ·)

]
(s)ds dσ(y)

=

∫
∂Ω

∫ T

0

∂

∂s

[
cSG

S (x,y, s)
]

A∗
−εS ,ρ
[
AεS

[
gS (y, ·)

]]
(s)ds dσ(y)

=

∫
∂Ω

∫ T

0

∂

∂s

[
cSG

S (x,y, s)
]
Sρ
[
gS (y, ·)

]
(s)ds dσ(y) + o (εS )

= ISS
ρ (x) + o (εS )

by using Proposition 3.2. Similarly, we get

IPP
a,ρ (x) = IPP

ρ (x) + o (εP ) .
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Moreover, the coupling terms ISP
a,ρ and IPS

a,ρ vanish. Indeed, thanks to Proposition 3.5, we

have

ISP
a,ρ (x) =

1

2π

∫
�d

∫
|ω|<ρ

ω2

[∫
∂Ω

[
cSĜ

S
−a,ω(x,y)

]
ĜP
a,ω(y,z) dσ(y)

]
dωF (z) dz � 0,

and

IPS
a,ρ (x) =

1

2π

∫
�d

∫
|ω|<ρ

ω2

[∫
∂Ω

[
cP ĜP

−a,ω(x,y)
]
ĜS
a,ω(y,z) dσ(y)

]
dωF (z) dz � 0.

Proposition 2.5 shows that we also have

ISP
ρ (x) =

1

2π

∫
�d

∫
|ω|<ρ

ω2

[∫
∂Ω

[
cSĜ

S
ω(x,y)

]
ĜP
ω(y,z) dσ(y)

]
dωF (z) dz � 0,

IPS
ρ (x) =

1

2π

∫
�d

∫
|ω|<ρ

ω2

[∫
∂Ω

[
cP ĜP

ω(x,y)
]
ĜS
ω(y,z) dσ(y)

]
dωF (z) dz � 0,

which concludes the proof. �

It is straightforward to check that

Ĩρ(x)
ρ→∞
−→ Ĩ(x) � F (x) (3.50)

by Theorem 2.6. Therefore, Ĩa,ρ provides a first-order correction in terms of εS + εP of

the attenuation effect. Moreover, the imaging functional Ĩa,ρ can be seen as the time-

reversal functional Ĩ defined by (2.7) applied to A∗
−εα,ρg

α
a , α = P , S . As shown in (3.38), the

regularized operator A∗
−ε,ρ gives a first-order approximation of the inverse of Aε. It would

be very interesting to construct higher order reconstructions in terms of the attenuation

effect using higher order approximations of the inverse of operator Aε. The problem is

more challenging than the one in the scalar case [5] because of the coupling between the

shear and pressure components. Also note that if one applies the time-reversal functional

Ĩ to the data ga directly, then one finds

Ĩ(x) =

∫
∂Ω

∫ T

0

∂

∂s

[
cPGP (x,y, s) + cSG

S (x,y, s)
]
[ga(y, ·)] (s) ds dσ(y)

=
1

2π

∫
�d

∫
�
ω2

[∫
∂Ω

[
cP ĜP

ω(x,y) + cSĜ
S
ω(x,y)

]
Ĝa,ω(y,z)dσ(y)

]
dωF (z)dz, (3.51)

which gives an error of the order of εS + εP as can be seen from expansion (3.36).

Remark 3.7 Finally, it is worth emphasizing that the choice of the cut-off parameter ρ is

based on the trade-off between image resolution and stability. On the one hand, ρ must

be selected large enough for good resolution. On the other hand, for the stability of the

reconstruction, it is required not to be too large. In the acoustic case, 1/
√
ε diam(Ω) (with

ε being the attenuation coefficient) serves as a threshold for ρ in order to ensure stability,

where diam denotes the diameter [5]. A threshold cut-off frequency ρ in the elastic case

can accordingly be 1/
√

max(εS , εP ) diam(Ω).
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3.5 Numerical simulations

In this section we present numerical illustrations and describe our algorithms for numerical

resolution of the source problem to show that Ĩa,ρ provides a better reconstruction than

Ĩ, where the attenuation effect was not taken into account.

3.5.1 Description of the algorithm

In the expression of Ĩa,ρ, the solution vs,a,ρ(x, t) is very difficult to obtain numerically.

Therefore, we prefer to regularize the problem by truncating high-frequency components

in space instead of time, in contrast with our theoretical analysis. In general, the choice of

regularization in time or in space depends on the numerical method used for computing

the solution. Since a Fourier spectral scheme is used here, regularizing in space is simpler

than regularizing in time.

This can be seen as an approximation ṽs,a,ρ(x, t) of vs,a,ρ(x, t) defined as the solution of

∂2ṽs,a,ρ
∂t2

(x, t) − Lλ,μṽs,a,ρ(x, t) +
∂

∂t
Lηλ,ημ ṽs,a,ρ(x, t) =

dδs(t)

dt
Xρ [ga(·, T − s)δ∂Ω] (x)δ∂Ω(x),

where the operator Xρ is defined by

Xρ [f ] (x) =

∫
|k|�ρ

[∫
�d

f (y) exp(−2iπk · y) dy

]
exp(2iπk · x) dk.

The operator Xρ, as the operator Sρ, truncates high frequencies but in the space variable.

Note that a criteria for choosing ρ similar to the one in the case of a truncation in time

can be obtained.

To compute the solution of the viscoelastic wave equation in two dimensions

∂2ua

∂t2
(x, t) − Lλ,μua(x, t) − ∂

∂t
Lηλ,ημua(x, t) = 0,

we use the same algorithm presented in the purely elastic case, i.e. we use a larger box

Ω ⊂ Q = [−L/2, L/2]2 with periodic boundary conditions and again a splitting spectral

Fourier approach coupled with a PML technique to simulate a free outgoing interface on

∂Q.

3.5.2 Experiments

In the sequel, for numerical illustrations, Ω is taken to be a unit disc. Its boundary

is discretized by 211 sensors. Each solution of elastic wave equation is computed over

(x, t) ∈ [−L/2, L/2]2 × [0, T ] with L = 4 and T = 2. The discretization steps are

dt = T/213 and dx = L/29.

Figure 4 presents the first experiment with Lamé parameters (λ, μ) = (1, 1) and atten-

uation coefficients (ηλ, ημ) = (0.0002, 0.0002), which gives (εP , εS ) = (0.0002, 0.0002). The

first (top) line corresponds to the two components of the initial source F . The second

line corresponds to the reconstruction of F without taking into account the attenuation
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Figure 4. (Colour online) Comparison between Ĩ and Ĩa,ρ in a viscoelastic medium. The para-

meters are (λ, μ) = (1, 1) and (ηλ, ημ) = (0.0002, 0.0002). From top to bottom: initial source; second

line: without correction of attenuation; last lines: with Ĩa,ρ and ρ = 15, 20, 25.
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Figure 5. (Colour online) Comparison between Ĩ and Ĩa,ρ in a viscoelastic medium. The paramet-

ers are (λ, μ) = (1, 1) and (ηλ, ημ) = (0.00005, 0.00005). First line: initial source; second line: without

correction of attenuation; last lines: with Ĩa,ρ and ρ = 15, 20, 25.
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Figure 6. (Colour online) Comparison between Ĩ and Ĩa,ρ in a viscoelastic medium. The para-

meters are (λ, μ) = (1, 1) and (ηλ, ημ) = (0.00005, 0.00005). First line: initial source F ; second line:

reconstruction of F using Ĩ; last three lines: reconstruction of F using Ĩa,ρ with ρ = 25, 30, 35.
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effect. The imaging functional Ĩ(x) appears to be blurred due to coupling effects. The last

three lines correspond to the reconstructions of F using the imaging functional Ĩa,ρ with

different values of ρ. We clearly observe a better reconstruction of the source F using

Ĩa,ρ than using the functional Ĩ provided that the regularization parameter ρ is chosen

appropriately large to insure a good resolution of the reconstruction.

Figures 5 and 6 present two other examples of reconstruction using Ĩa,ρ. The same

observation holds.

4 Conclusion

In this paper, we have introduced fundamental tools for elastic wave imaging in both

elastic and viscoelastic media. We have presented and analysed time-reversal algorithms

based on a weighted Helmholtz decomposition that have significantly better focusing

properties. We have proved new Kirchhoff–Helmholtz identities. We have numerically

highlighted the potential of our original approach. We plan to use the analytical and

numerical tools introduced in this paper to develop cross-correlation techniques for

imaging in cluttered elastic media.

Appendix A Proof of ((3.46)) and definition of attenuation operators

Let

LS
ηλ,ημ

u = c2S εS [Δu − ∇(∇ · u)] and LP
ηλ,ημ

u = c2P εP∇(∇ · u), (A 1)

where

εS =
ημ

μ
and εP =

ηλ + 2ημ
λ+ 2μ

. (A 2)

We have

(Lα
λ,μ ∓ iωLα

ηλ,ημ
+ ω2)Ĝα

±a,ω(x,y) = Hα
[

− δyI
]
(x), α = P , S. (A 3)

Recall also that tensor bG
α

±a,ω is the solution to (A 3). Moreover, from (A 1), we have

Lα
ηλ,ημ

[
bG
α

±a,ωp
]

= εαLα
λ,μ

[
bG
α

±a,ωp
]

∀p ∈ �d, α = P , S. (A 4)

Therefore, by virtue of (A 3) and (A 4), we have for all x�y(
(1 ∓ iωεα) Lα

λ,μ + ω2I
)
bG±a,ω(x,y) = Hα

[
−δyI
]
(x),

or equivalently,

(
Lα

λ,μ + κ±εα(ω)2
)
bG±a,ω(x,y) =

1

1 ∓ iωεα
Hα
[
−δyI
]
(x) =

[
κ±εα (ω)

ω

]2
Hα
[
−δyI
]
(x),

(A 5)

where

κ±ε(ω) =
ω√

1 ∓ iωε
. (A 6)
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Note also that bG
α

ω satisfies, for all x�y,(
Lα

λ,μ + ω2
)
bG
α

ω(x,y) = Hα
[
−δyI
]
(x), α = P , S, .

Consequently, (
Lα

λ,μ + κ±ε(ω)2
)
bG
α

κ±ε(ω)(x,y) = Hα
[
−δyI
]
(x), α = P , S. (A 7)

Therefore, comparing (A 7) and (A 5) and using the argument of a unique solution

subject to radiation conditions, we conclude that

Ĝα
±a,ω(x,y) =

[
κ±εα(ω)

ω

]2
Ĝα
κ±εα (ω)(x,y), α = P , S. (A 8)

In particular, as ûα
ω and ûα

a,ω, respectively, satisfy

(
ω2 + Lα

λ,μ

)
buα
ω = iωHα [F ] and

(
κεα(ω)2 + Lα

λ,μ

)
buα
a,ω = i

κεα(ω)2

ω
Hα [F ] , α = P , S,

(A 9)

we have

buα
a,ω(x) =

κεα (ω)

ω
buκεα (ω)(x). (A 10)

Consequently, by using inverse Fourier transform, we arrive at

uα
a = Aεα [uα] , (A 11)

where the attenuation operator Aε, for ε > 0, is given by

Aε [φ] (t) =
1

2π

∫
�

κε(ω)

ω

{∫
�+

φ(s) exp{iκε(ω)s}ds
}

exp{−iωt}dω, t > 0. (A 12)
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[32] Hörmander, L. (2003) The Analysis of Linear Partial Differential Operators. I. Distribution

Theory and Fourier Analysis, Classics in Mathematics, Springer-Verlag, Berlin, Germany.

[33] Kalimeris, K. & Scherzer, O. (to appear) Photoacoustic imaging in attenuating acous-

tic media based on strongly causal models. Math. Meth. Appl. Sci. (arXiv:1211.1516v1)

doi:10.1002/mma.2756.

[34] Kowar, R. & Scherzer, O. (2011) Photoacoustic imaging taking into account attenuation. In:

Mathematical Modeling in Biomedical Imaging II, Lecture Notes in Mathematics, Vol. 2035,

Springer-Verlag, Berlin, Germany, pp. 85–130.

[35] Kowar, R., Scherzer, O. & Bonnefond, X. (2011) Causality analysis of frequency dependent

wave attenuation. Math. Meth. Appl. Sci. 34, 108–124.

[36] Larmat, C., Montagner, J. P., Fink, M., Capdeville, Y., Tourin, A. & Clévédé, E. (2006)
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